MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jaob Unicode version

Theorem jaob 783
Description: Disjunction of antecedents. Compare Theorem *4.77 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-May-1994.) (Proof shortened by Wolf Lammen, 9-Dec-2012.)
Assertion
Ref Expression
jaob

Proof of Theorem jaob
StepHypRef Expression
1 pm2.67-2 402 . . 3
2 olc 384 . . . 4
32imim1i 58 . . 3
41, 3jca 532 . 2
5 pm3.44 511 . 2
64, 5impbii 188 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  \/wo 368  /\wa 369
This theorem is referenced by:  pm4.77  787  pm5.53  796  pm4.83  929  axio  2425  unss  3677  ralunb  3684  intun  4319  intpr  4320  relop  5158  sqrt2irr  13982  algcvgblem  14206  efgred  16766  caucfil  21722  plydivex  22693  2sqlem6  23644  arg-ax  29881  tendoeq2  36500  bj-ifidg  37707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371
  Copyright terms: Public domain W3C validator