![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > jaob | Unicode version |
Description: Disjunction of antecedents. Compare Theorem *4.77 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-May-1994.) (Proof shortened by Wolf Lammen, 9-Dec-2012.) |
Ref | Expression |
---|---|
jaob |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.67-2 402 | . . 3 | |
2 | olc 384 | . . . 4 | |
3 | 2 | imim1i 58 | . . 3 |
4 | 1, 3 | jca 532 | . 2 |
5 | pm3.44 511 | . 2 | |
6 | 4, 5 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
\/ wo 368 /\ wa 369 |
This theorem is referenced by: pm4.77 787 pm5.53 796 pm4.83 929 axio 2425 unss 3677 ralunb 3684 intun 4319 intpr 4320 relop 5158 sqrt2irr 13982 algcvgblem 14206 efgred 16766 caucfil 21722 plydivex 22693 2sqlem6 23644 arg-ax 29881 tendoeq2 36500 bj-ifidg 37707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 |
Copyright terms: Public domain | W3C validator |