![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > jctild | Unicode version |
Description: Deduction conjoining a theorem to left of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
Ref | Expression |
---|---|
jctild.1 | |
jctild.2 |
Ref | Expression |
---|---|
jctild |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctild.2 | . . 3 | |
2 | 1 | a1d 25 | . 2 |
3 | jctild.1 | . 2 | |
4 | 2, 3 | jcad 533 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369 |
This theorem is referenced by: syl6an 545 anc2li 557 ifpfal 1389 2eu1OLD 2377 reusv7OLD 4664 ordunidif 4931 isofrlem 6236 dfwe2 6617 orduniorsuc 6665 poxp 6912 fnse 6917 ssenen 7711 dffi3 7911 fpwwe2lem13 9041 zmulcl 10937 rpneg 11278 rexuz3 13181 cau3lem 13187 climrlim2 13370 o1rlimmul 13441 iseralt 13507 gcdeq 14190 isprm3 14226 vdwnnlem2 14514 ablfaclem3 17138 epttop 19510 lmcnp 19805 dfcon2 19920 txcnp 20121 cmphaushmeo 20301 isfild 20359 cnpflf2 20501 flimfnfcls 20529 alexsubALT 20551 fgcfil 21710 bcthlem5 21767 ivthlem2 21864 ivthlem3 21865 dvfsumrlim 22432 plypf1 22609 axeuclidlem 24265 wwlknredwwlkn0 24727 wwlkextwrd 24728 wwlkextproplem1 24741 clwlkisclwwlklem2a1 24779 rusgranumwlklem1 24949 numclwwlkovf2ex 25086 extwwlkfab 25090 lnon0 25713 hstles 27150 mdsl1i 27240 atcveq0 27267 atcvat4i 27316 cdjreui 27351 issgon 28123 conpcon 28680 tfisg 29284 frmin 29322 outsideofrflx 29777 heicant 30049 equivtotbnd 30274 ismtybndlem 30302 2reu1 32191 cvrat4 35167 linepsubN 35476 pmapsub 35492 osumcllem4N 35683 pexmidlem1N 35694 dochexmidlem1 37187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |