![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > jctr | Unicode version |
Description: Inference conjoining a theorem to the right of a consequent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
Ref | Expression |
---|---|
jctl.1 |
Ref | Expression |
---|---|
jctr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 | |
2 | jctl.1 | . 2 | |
3 | 1, 2 | jctir 538 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369 |
This theorem is referenced by: mpanl2 681 mpanr2 684 bm1.1OLD 2441 brprcneu 5864 mpt2eq12 6357 tfr3 7087 oaabslem 7311 omabslem 7314 isinf 7753 pssnn 7758 ige2m2fzo 11879 uzindi 12091 drsdirfi 15567 ga0 16336 lbsext 17809 lindfrn 18856 fbssint 20339 filssufilg 20412 neiflim 20475 lmmbrf 21701 caucfil 21722 constr2spth 24602 constr2pth 24603 constr3lem4 24647 efghgrpOLD 25375 sspid 25638 onsucsuccmpi 29908 diophun 30707 eldioph4b 30745 dvsid 31236 dvsef 31237 cnfex 31403 dvmptfprod 31742 un10 33585 lhpexle1 35732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |