![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > karden | Unicode version |
Description: If we allow the Axiom of Regularity, we can avoid the Axiom of Choice by defining the cardinal number of a set as the set of all sets equinumerous to it and having the least possible rank. This theorem proves the equinumerosity relationship for this definition (compare carden 8947). The hypotheses correspond to the definition of kard of [Enderton] p. 222 (which we don't define separately since currently we do not use it elsewhere). This theorem along with kardex 8333 justify the definition of kard. The restriction to the least rank prevents the proper class that would result from . (Contributed by NM, 18-Dec-2003.) |
Ref | Expression |
---|---|
karden.1 | |
karden.2 | |
karden.3 | |
karden.4 |
Ref | Expression |
---|---|
karden |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | karden.1 | . . . . . . . 8 | |
2 | 1 | enref 7568 | . . . . . . 7 |
3 | breq1 4455 | . . . . . . . 8 | |
4 | 1, 3 | spcev 3201 | . . . . . . 7 |
5 | 2, 4 | ax-mp 5 | . . . . . 6 |
6 | abn0 3804 | . . . . . 6 | |
7 | 5, 6 | mpbir 209 | . . . . 5 |
8 | scott0 8325 | . . . . . 6 | |
9 | 8 | necon3bii 2725 | . . . . 5 |
10 | 7, 9 | mpbi 208 | . . . 4 |
11 | rabn0 3805 | . . . 4 | |
12 | 10, 11 | mpbi 208 | . . 3 |
13 | vex 3112 | . . . . . . . 8 | |
14 | breq1 4455 | . . . . . . . 8 | |
15 | 13, 14 | elab 3246 | . . . . . . 7 |
16 | breq1 4455 | . . . . . . . 8 | |
17 | 16 | ralab 3260 | . . . . . . 7 |
18 | 15, 17 | anbi12i 697 | . . . . . 6 |
19 | simpl 457 | . . . . . . . . 9 | |
20 | 19 | a1i 11 | . . . . . . . 8 |
21 | karden.3 | . . . . . . . . . . . 12 | |
22 | karden.4 | . . . . . . . . . . . 12 | |
23 | 21, 22 | eqeq12i 2477 | . . . . . . . . . . 11 |
24 | abbi 2588 | . . . . . . . . . . 11 | |
25 | 23, 24 | bitr4i 252 | . . . . . . . . . 10 |
26 | breq1 4455 | . . . . . . . . . . . . 13 | |
27 | fveq2 5871 | . . . . . . . . . . . . . . . 16 | |
28 | 27 | sseq1d 3530 | . . . . . . . . . . . . . . 15 |
29 | 28 | imbi2d 316 | . . . . . . . . . . . . . 14 |
30 | 29 | albidv 1713 | . . . . . . . . . . . . 13 |
31 | 26, 30 | anbi12d 710 | . . . . . . . . . . . 12 |
32 | breq1 4455 | . . . . . . . . . . . . 13 | |
33 | 28 | imbi2d 316 | . . . . . . . . . . . . . 14 |
34 | 33 | albidv 1713 | . . . . . . . . . . . . 13 |
35 | 32, 34 | anbi12d 710 | . . . . . . . . . . . 12 |
36 | 31, 35 | bibi12d 321 | . . . . . . . . . . 11 |
37 | 36 | spv 2011 | . . . . . . . . . 10 |
38 | 25, 37 | sylbi 195 | . . . . . . . . 9 |
39 | simpl 457 | . . . . . . . . 9 | |
40 | 38, 39 | syl6bi 228 | . . . . . . . 8 |
41 | 20, 40 | jcad 533 | . . . . . . 7 |
42 | ensym 7584 | . . . . . . . 8 | |
43 | entr 7587 | . . . . . . . 8 | |
44 | 42, 43 | sylan 471 | . . . . . . 7 |
45 | 41, 44 | syl6 33 | . . . . . 6 |
46 | 18, 45 | syl5bi 217 | . . . . 5 |
47 | 46 | expd 436 | . . . 4 |
48 | 47 | rexlimdv 2947 | . . 3 |
49 | 12, 48 | mpi 17 | . 2 |
50 | enen2 7678 | . . . . 5 | |
51 | enen2 7678 | . . . . . . 7 | |
52 | 51 | imbi1d 317 | . . . . . 6 |
53 | 52 | albidv 1713 | . . . . 5 |
54 | 50, 53 | anbi12d 710 | . . . 4 |
55 | 54 | abbidv 2593 | . . 3 |
56 | 55, 21, 22 | 3eqtr4g 2523 | . 2 |
57 | 49, 56 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
E. wex 1612 e. wcel 1818 { cab 2442
=/= wne 2652 A. wral 2807 E. wrex 2808
{ crab 2811 cvv 3109
C_ wss 3475 c0 3784 class class class wbr 4452
` cfv 5593 cen 7533 crnk 8202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-iin 4333 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-r1 8203 df-rank 8204 |
Copyright terms: Public domain | W3C validator |