![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > kmlem10 | Unicode version |
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.) |
Ref | Expression |
---|---|
kmlem9.1 |
Ref | Expression |
---|---|
kmlem10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kmlem9.1 | . . 3 | |
2 | 1 | kmlem9 8559 | . 2 |
3 | vex 3112 | . . . . 5 | |
4 | 3 | abrexex 6774 | . . . 4 |
5 | 1, 4 | eqeltri 2541 | . . 3 |
6 | raleq 3054 | . . . . 5 | |
7 | 6 | raleqbi1dv 3062 | . . . 4 |
8 | raleq 3054 | . . . . 5 | |
9 | 8 | exbidv 1714 | . . . 4 |
10 | 7, 9 | imbi12d 320 | . . 3 |
11 | 5, 10 | spcv 3200 | . 2 |
12 | 2, 11 | mpi 17 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 A. wal 1393
= wceq 1395 E. wex 1612 { cab 2442
=/= wne 2652 A. wral 2807 E. wrex 2808
cvv 3109
\ cdif 3472 i^i cin 3474 c0 3784 { csn 4029 U. cuni 4249 |
This theorem is referenced by: kmlem13 8563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 |
Copyright terms: Public domain | W3C validator |