![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > kmlem11 | Unicode version |
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 26-Mar-2004.) |
Ref | Expression |
---|---|
kmlem9.1 |
Ref | Expression |
---|---|
kmlem11 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kmlem9.1 | . . . . . 6 | |
2 | 1 | unieqi 4258 | . . . . 5 |
3 | vex 3112 | . . . . . . 7 | |
4 | difexg 4600 | . . . . . . 7 | |
5 | 3, 4 | ax-mp 5 | . . . . . 6 |
6 | 5 | dfiun2 4364 | . . . . 5 |
7 | 2, 6 | eqtr4i 2489 | . . . 4 |
8 | 7 | ineq2i 3696 | . . 3 |
9 | iunin2 4394 | . . 3 | |
10 | 8, 9 | eqtr4i 2489 | . 2 |
11 | undif2 3904 | . . . . . 6 | |
12 | snssi 4174 | . . . . . . 7 | |
13 | ssequn1 3673 | . . . . . . 7 | |
14 | 12, 13 | sylib 196 | . . . . . 6 |
15 | 11, 14 | syl5req 2511 | . . . . 5 |
16 | 15 | iuneq1d 4355 | . . . 4 |
17 | iunxun 4412 | . . . . . 6 | |
18 | vex 3112 | . . . . . . . 8 | |
19 | difeq1 3614 | . . . . . . . . . 10 | |
20 | sneq 4039 | . . . . . . . . . . . . 13 | |
21 | 20 | difeq2d 3621 | . . . . . . . . . . . 12 |
22 | 21 | unieqd 4259 | . . . . . . . . . . 11 |
23 | 22 | difeq2d 3621 | . . . . . . . . . 10 |
24 | 19, 23 | eqtrd 2498 | . . . . . . . . 9 |
25 | 24 | ineq2d 3699 | . . . . . . . 8 |
26 | 18, 25 | iunxsn 4410 | . . . . . . 7 |
27 | 26 | uneq1i 3653 | . . . . . 6 |
28 | 17, 27 | eqtri 2486 | . . . . 5 |
29 | eldifsni 4156 | . . . . . . . . . 10 | |
30 | incom 3690 | . . . . . . . . . . . 12 | |
31 | kmlem4 8554 | . . . . . . . . . . . 12 | |
32 | 30, 31 | syl5eq 2510 | . . . . . . . . . . 11 |
33 | 32 | ex 434 | . . . . . . . . . 10 |
34 | 29, 33 | syl5 32 | . . . . . . . . 9 |
35 | 34 | ralrimiv 2869 | . . . . . . . 8 |
36 | iuneq2 4347 | . . . . . . . 8 | |
37 | 35, 36 | syl 16 | . . . . . . 7 |
38 | iun0 4386 | . . . . . . 7 | |
39 | 37, 38 | syl6eq 2514 | . . . . . 6 |
40 | 39 | uneq2d 3657 | . . . . 5 |
41 | 28, 40 | syl5eq 2510 | . . . 4 |
42 | 16, 41 | eqtrd 2498 | . . 3 |
43 | un0 3810 | . . . 4 | |
44 | indif 3739 | . . . 4 | |
45 | 43, 44 | eqtri 2486 | . . 3 |
46 | 42, 45 | syl6eq 2514 | . 2 |
47 | 10, 46 | syl5eq 2510 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 { cab 2442
=/= wne 2652 A. wral 2807 E. wrex 2808
cvv 3109
\ cdif 3472 u. cun 3473 i^i cin 3474
C_ wss 3475 c0 3784 { csn 4029 U. cuni 4249
U_ ciun 4330 |
This theorem is referenced by: kmlem12 8562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-sn 4030 df-uni 4250 df-iun 4332 |
Copyright terms: Public domain | W3C validator |