![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > kmlem12 | Unicode version |
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 27-Mar-2004.) |
Ref | Expression |
---|---|
kmlem9.1 |
Ref | Expression |
---|---|
kmlem12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kmlem9.1 | . . . . 5 | |
2 | 1 | raleqi 3058 | . . . 4 |
3 | df-ral 2812 | . . . 4 | |
4 | vex 3112 | . . . . . . . . 9 | |
5 | eqeq1 2461 | . . . . . . . . . 10 | |
6 | 5 | rexbidv 2968 | . . . . . . . . 9 |
7 | 4, 6 | elab 3246 | . . . . . . . 8 |
8 | 7 | imbi1i 325 | . . . . . . 7 |
9 | r19.23v 2937 | . . . . . . 7 | |
10 | 8, 9 | bitr4i 252 | . . . . . 6 |
11 | 10 | albii 1640 | . . . . 5 |
12 | ralcom4 3128 | . . . . 5 | |
13 | vex 3112 | . . . . . . . 8 | |
14 | difexg 4600 | . . . . . . . 8 | |
15 | 13, 14 | ax-mp 5 | . . . . . . 7 |
16 | neeq1 2738 | . . . . . . . 8 | |
17 | ineq1 3692 | . . . . . . . . . 10 | |
18 | 17 | eleq2d 2527 | . . . . . . . . 9 |
19 | 18 | eubidv 2304 | . . . . . . . 8 |
20 | 16, 19 | imbi12d 320 | . . . . . . 7 |
21 | 15, 20 | ceqsalv 3137 | . . . . . 6 |
22 | 21 | ralbii 2888 | . . . . 5 |
23 | 11, 12, 22 | 3bitr2i 273 | . . . 4 |
24 | 2, 3, 23 | 3bitri 271 | . . 3 |
25 | ralim 2846 | . . 3 | |
26 | 24, 25 | sylbi 195 | . 2 |
27 | difeq1 3614 | . . . . . . . 8 | |
28 | sneq 4039 | . . . . . . . . . . 11 | |
29 | 28 | difeq2d 3621 | . . . . . . . . . 10 |
30 | 29 | unieqd 4259 | . . . . . . . . 9 |
31 | 30 | difeq2d 3621 | . . . . . . . 8 |
32 | 27, 31 | eqtrd 2498 | . . . . . . 7 |
33 | 32 | neeq1d 2734 | . . . . . 6 |
34 | 33 | cbvralv 3084 | . . . . 5 |
35 | 32 | ineq1d 3698 | . . . . . . . 8 |
36 | 35 | eleq2d 2527 | . . . . . . 7 |
37 | 36 | eubidv 2304 | . . . . . 6 |
38 | 37 | cbvralv 3084 | . . . . 5 |
39 | 34, 38 | imbi12i 326 | . . . 4 |
40 | in12 3708 | . . . . . . . . . . 11 | |
41 | incom 3690 | . . . . . . . . . . 11 | |
42 | 40, 41 | eqtri 2486 | . . . . . . . . . 10 |
43 | 1 | kmlem11 8561 | . . . . . . . . . . 11 |
44 | 43 | ineq1d 3698 | . . . . . . . . . 10 |
45 | 42, 44 | syl5req 2511 | . . . . . . . . 9 |
46 | 45 | eleq2d 2527 | . . . . . . . 8 |
47 | 46 | eubidv 2304 | . . . . . . 7 |
48 | ax-1 6 | . . . . . . 7 | |
49 | 47, 48 | syl6bi 228 | . . . . . 6 |
50 | 49 | ralimia 2848 | . . . . 5 |
51 | 50 | imim2i 14 | . . . 4 |
52 | 39, 51 | sylbi 195 | . . 3 |
53 | 52 | com12 31 | . 2 |
54 | 26, 53 | syl5 32 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 A. wal 1393
= wceq 1395 e. wcel 1818 E! weu 2282
{ cab 2442 =/= wne 2652 A. wral 2807
E. wrex 2808 cvv 3109
\ cdif 3472 i^i cin 3474 c0 3784 { csn 4029 U. cuni 4249 |
This theorem is referenced by: kmlem13 8563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-sn 4030 df-uni 4250 df-iun 4332 |
Copyright terms: Public domain | W3C validator |