![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > kmlem16 | Unicode version |
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4 5 <=> 4. (Contributed by NM, 4-Apr-2004.) |
Ref | Expression |
---|---|
kmlem14.1 | |
kmlem14.2 | |
kmlem14.3 |
Ref | Expression |
---|---|
kmlem16 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kmlem14.1 | . . . 4 | |
2 | kmlem14.2 | . . . 4 | |
3 | kmlem14.3 | . . . 4 | |
4 | 1, 2, 3 | kmlem14 8564 | . . 3 |
5 | 1, 2, 3 | kmlem15 8565 | . . . 4 |
6 | 5 | exbii 1667 | . . 3 |
7 | 4, 6 | orbi12i 521 | . 2 |
8 | 19.43 1693 | . 2 | |
9 | pm3.24 882 | . . . . . 6 | |
10 | simpl 457 | . . . . . . . . 9 | |
11 | 10 | sps 1865 | . . . . . . . 8 |
12 | 11 | exlimivv 1723 | . . . . . . 7 |
13 | simpl 457 | . . . . . . . . 9 | |
14 | 13 | sps 1865 | . . . . . . . 8 |
15 | 14 | exlimivv 1723 | . . . . . . 7 |
16 | 12, 15 | anim12i 566 | . . . . . 6 |
17 | 9, 16 | mto 176 | . . . . 5 |
18 | 19.33b 1696 | . . . . 5 | |
19 | 17, 18 | ax-mp 5 | . . . 4 |
20 | 10 | exlimiv 1722 | . . . . . . . . . 10 |
21 | 13 | exlimiv 1722 | . . . . . . . . . 10 |
22 | 20, 21 | anim12i 566 | . . . . . . . . 9 |
23 | 9, 22 | mto 176 | . . . . . . . 8 |
24 | 19.33b 1696 | . . . . . . . 8 | |
25 | 23, 24 | ax-mp 5 | . . . . . . 7 |
26 | 25 | exbii 1667 | . . . . . 6 |
27 | 19.43 1693 | . . . . . 6 | |
28 | 26, 27 | bitr2i 250 | . . . . 5 |
29 | 28 | albii 1640 | . . . 4 |
30 | 19, 29 | bitr3i 251 | . . 3 |
31 | 30 | exbii 1667 | . 2 |
32 | 7, 8, 31 | 3bitr2i 273 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
A. wal 1393 E. wex 1612 e. wcel 1818
E! weu 2282 =/= wne 2652 A. wral 2807
E. wrex 2808 i^i cin 3474 |
This theorem is referenced by: dfackm 8567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-v 3111 df-in 3482 |
Copyright terms: Public domain | W3C validator |