![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > kmlem5 | Unicode version |
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.) |
Ref | Expression |
---|---|
kmlem5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 3630 | . . . 4 | |
2 | sslin 3723 | . . . 4 | |
3 | 1, 2 | ax-mp 5 | . . 3 |
4 | kmlem4 8554 | . . 3 | |
5 | 3, 4 | syl5sseq 3551 | . 2 |
6 | ss0b 3815 | . 2 | |
7 | 5, 6 | sylib 196 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 =/= wne 2652 \ cdif 3472
i^i cin 3474 C_ wss 3475 c0 3784 { csn 4029 U. cuni 4249 |
This theorem is referenced by: kmlem9 8559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-v 3111 df-dif 3478 df-in 3482 df-ss 3489 df-nul 3785 df-sn 4030 df-uni 4250 |
Copyright terms: Public domain | W3C validator |