MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kmlem5 Unicode version

Theorem kmlem5 8555
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
kmlem5
Distinct variable group:   , ,

Proof of Theorem kmlem5
StepHypRef Expression
1 difss 3630 . . . 4
2 sslin 3723 . . . 4
31, 2ax-mp 5 . . 3
4 kmlem4 8554 . . 3
53, 4syl5sseq 3551 . 2
6 ss0b 3815 . 2
75, 6sylib 196 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  =wceq 1395  =/=wne 2652  \cdif 3472  i^icin 3474  C_wss 3475   c0 3784  {csn 4029  U.cuni 4249
This theorem is referenced by:  kmlem9  8559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-v 3111  df-dif 3478  df-in 3482  df-ss 3489  df-nul 3785  df-sn 4030  df-uni 4250
  Copyright terms: Public domain W3C validator