MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kmlem6 Unicode version

Theorem kmlem6 8556
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 4 => 1. (Contributed by NM, 26-Mar-2004.)
Assertion
Ref Expression
kmlem6
Distinct variable groups:   ,   , ,   , , ,

Proof of Theorem kmlem6
StepHypRef Expression
1 r19.26 2984 . 2
2 n0 3794 . . . . 5
32biimpi 194 . . . 4
4 ne0i 3790 . . . . . . . 8
54necon2bi 2694 . . . . . . 7
65imim2i 14 . . . . . 6
76ralimi 2850 . . . . 5
87alrimiv 1719 . . . 4
9 19.29r 1684 . . . . 5
10 df-rex 2813 . . . . 5
119, 10sylibr 212 . . . 4
123, 8, 11syl2an 477 . . 3
1312ralimi 2850 . 2
141, 13sylbir 213 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  /\wa 369  A.wal 1393  =wceq 1395  E.wex 1612  e.wcel 1818  =/=wne 2652  A.wral 2807  E.wrex 2808   c0 3784
This theorem is referenced by:  kmlem7  8557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-v 3111  df-dif 3478  df-nul 3785
  Copyright terms: Public domain W3C validator