![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > kmlem6 | Unicode version |
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 4 => 1. (Contributed by NM, 26-Mar-2004.) |
Ref | Expression |
---|---|
kmlem6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.26 2984 | . 2 | |
2 | n0 3794 | . . . . 5 | |
3 | 2 | biimpi 194 | . . . 4 |
4 | ne0i 3790 | . . . . . . . 8 | |
5 | 4 | necon2bi 2694 | . . . . . . 7 |
6 | 5 | imim2i 14 | . . . . . 6 |
7 | 6 | ralimi 2850 | . . . . 5 |
8 | 7 | alrimiv 1719 | . . . 4 |
9 | 19.29r 1684 | . . . . 5 | |
10 | df-rex 2813 | . . . . 5 | |
11 | 9, 10 | sylibr 212 | . . . 4 |
12 | 3, 8, 11 | syl2an 477 | . . 3 |
13 | 12 | ralimi 2850 | . 2 |
14 | 1, 13 | sylbir 213 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 A. wal 1393 = wceq 1395
E. wex 1612 e. wcel 1818 =/= wne 2652
A. wral 2807 E. wrex 2808 c0 3784 |
This theorem is referenced by: kmlem7 8557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-v 3111 df-dif 3478 df-nul 3785 |
Copyright terms: Public domain | W3C validator |