![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > kmlem7 | Unicode version |
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 4 => 1. (Contributed by NM, 26-Mar-2004.) |
Ref | Expression |
---|---|
kmlem7 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kmlem6 8556 | . 2 | |
2 | ralinexa 2909 | . . . . . 6 | |
3 | 2 | rexbii 2959 | . . . . 5 |
4 | rexnal 2905 | . . . . 5 | |
5 | 3, 4 | bitri 249 | . . . 4 |
6 | 5 | ralbii 2888 | . . 3 |
7 | ralnex 2903 | . . 3 | |
8 | 6, 7 | bitri 249 | . 2 |
9 | 1, 8 | sylib 196 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 e. wcel 1818
=/= wne 2652 A. wral 2807 E. wrex 2808
i^i cin 3474 c0 3784 |
This theorem is referenced by: kmlem13 8563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-v 3111 df-dif 3478 df-nul 3785 |
Copyright terms: Public domain | W3C validator |