![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > kmlem8 | Unicode version |
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4 1 <=> 4. (Contributed by NM, 4-Apr-2004.) |
Ref | Expression |
---|---|
kmlem8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralnex 2903 | . . . . 5 | |
2 | df-rex 2813 | . . . . . . . 8 | |
3 | rexnal 2905 | . . . . . . . 8 | |
4 | 2, 3 | bitr3i 251 | . . . . . . 7 |
5 | exsimpl 1677 | . . . . . . . 8 | |
6 | n0 3794 | . . . . . . . 8 | |
7 | 5, 6 | sylibr 212 | . . . . . . 7 |
8 | 4, 7 | sylbir 213 | . . . . . 6 |
9 | 8 | ralimi 2850 | . . . . 5 |
10 | 1, 9 | sylbir 213 | . . . 4 |
11 | biimt 335 | . . . . . . . . 9 | |
12 | 11 | ralimi 2850 | . . . . . . . 8 |
13 | ralbi 2988 | . . . . . . . 8 | |
14 | 12, 13 | syl 16 | . . . . . . 7 |
15 | 14 | anbi2d 703 | . . . . . 6 |
16 | 15 | exbidv 1714 | . . . . 5 |
17 | kmlem2 8552 | . . . . 5 | |
18 | 16, 17 | syl6rbbr 264 | . . . 4 |
19 | 10, 18 | syl 16 | . . 3 |
20 | 19 | pm5.74i 245 | . 2 |
21 | pm4.64 372 | . 2 | |
22 | 20, 21 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
E. wex 1612 e. wcel 1818 E! weu 2282
=/= wne 2652 A. wral 2807 E. wrex 2808
i^i cin 3474 c0 3784 |
This theorem is referenced by: dfackm 8567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-sn 4030 df-pr 4032 df-uni 4250 |
Copyright terms: Public domain | W3C validator |