![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > leexp1a | Unicode version |
Description: Weak mantissa ordering relationship for exponentiation. (Contributed by NM, 18-Dec-2005.) |
Ref | Expression |
---|---|
leexp1a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6304 | . . . . . . 7 | |
2 | oveq2 6304 | . . . . . . 7 | |
3 | 1, 2 | breq12d 4465 | . . . . . 6 |
4 | 3 | imbi2d 316 | . . . . 5 |
5 | oveq2 6304 | . . . . . . 7 | |
6 | oveq2 6304 | . . . . . . 7 | |
7 | 5, 6 | breq12d 4465 | . . . . . 6 |
8 | 7 | imbi2d 316 | . . . . 5 |
9 | oveq2 6304 | . . . . . . 7 | |
10 | oveq2 6304 | . . . . . . 7 | |
11 | 9, 10 | breq12d 4465 | . . . . . 6 |
12 | 11 | imbi2d 316 | . . . . 5 |
13 | oveq2 6304 | . . . . . . 7 | |
14 | oveq2 6304 | . . . . . . 7 | |
15 | 13, 14 | breq12d 4465 | . . . . . 6 |
16 | 15 | imbi2d 316 | . . . . 5 |
17 | recn 9603 | . . . . . . 7 | |
18 | recn 9603 | . . . . . . 7 | |
19 | exp0 12170 | . . . . . . . . . 10 | |
20 | 19 | adantr 465 | . . . . . . . . 9 |
21 | 1le1 10202 | . . . . . . . . 9 | |
22 | 20, 21 | syl6eqbr 4489 | . . . . . . . 8 |
23 | exp0 12170 | . . . . . . . . 9 | |
24 | 23 | adantl 466 | . . . . . . . 8 |
25 | 22, 24 | breqtrrd 4478 | . . . . . . 7 |
26 | 17, 18, 25 | syl2an 477 | . . . . . 6 |
27 | 26 | adantr 465 | . . . . 5 |
28 | simpll 753 | . . . . . . . . . . . . . 14 | |
29 | reexpcl 12183 | . . . . . . . . . . . . . 14 | |
30 | 28, 29 | sylan 471 | . . . . . . . . . . . . 13 |
31 | simplll 759 | . . . . . . . . . . . . . 14 | |
32 | simpr 461 | . . . . . . . . . . . . . 14 | |
33 | simplrl 761 | . . . . . . . . . . . . . 14 | |
34 | expge0 12202 | . . . . . . . . . . . . . 14 | |
35 | 31, 32, 33, 34 | syl3anc 1228 | . . . . . . . . . . . . 13 |
36 | simplr 755 | . . . . . . . . . . . . . 14 | |
37 | reexpcl 12183 | . . . . . . . . . . . . . 14 | |
38 | 36, 37 | sylan 471 | . . . . . . . . . . . . 13 |
39 | 30, 35, 38 | jca31 534 | . . . . . . . . . . . 12 |
40 | simpl 457 | . . . . . . . . . . . . . 14 | |
41 | simpl 457 | . . . . . . . . . . . . . 14 | |
42 | 40, 41 | anim12i 566 | . . . . . . . . . . . . 13 |
43 | 42 | adantr 465 | . . . . . . . . . . . 12 |
44 | simpllr 760 | . . . . . . . . . . . 12 | |
45 | 39, 43, 44 | jca32 535 | . . . . . . . . . . 11 |
46 | 45 | adantr 465 | . . . . . . . . . 10 |
47 | simpr 461 | . . . . . . . . . . 11 | |
48 | simplrr 762 | . . . . . . . . . . . 12 | |
49 | 48 | adantr 465 | . . . . . . . . . . 11 |
50 | 47, 49 | jca 532 | . . . . . . . . . 10 |
51 | lemul12a 10425 | . . . . . . . . . 10 | |
52 | 46, 50, 51 | sylc 60 | . . . . . . . . 9 |
53 | expp1 12173 | . . . . . . . . . . . . 13 | |
54 | 17, 53 | sylan 471 | . . . . . . . . . . . 12 |
55 | 54 | adantlr 714 | . . . . . . . . . . 11 |
56 | 55 | adantlr 714 | . . . . . . . . . 10 |
57 | 56 | adantr 465 | . . . . . . . . 9 |
58 | expp1 12173 | . . . . . . . . . . . . 13 | |
59 | 18, 58 | sylan 471 | . . . . . . . . . . . 12 |
60 | 59 | adantll 713 | . . . . . . . . . . 11 |
61 | 60 | adantlr 714 | . . . . . . . . . 10 |
62 | 61 | adantr 465 | . . . . . . . . 9 |
63 | 52, 57, 62 | 3brtr4d 4482 | . . . . . . . 8 |
64 | 63 | ex 434 | . . . . . . 7 |
65 | 64 | expcom 435 | . . . . . 6 |
66 | 65 | a2d 26 | . . . . 5 |
67 | 4, 8, 12, 16, 27, 66 | nn0ind 10984 | . . . 4 |
68 | 67 | exp4c 608 | . . 3 |
69 | 68 | com3l 81 | . 2 |
70 | 69 | 3imp1 1209 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
class class class wbr 4452 (class class class)co 6296
cc 9511 cr 9512 0 cc0 9513 1 c1 9514
caddc 9516 cmul 9518 cle 9650 cn0 10820
cexp 12166 |
This theorem is referenced by: expubnd 12226 facubnd 12378 pserulm 22817 logexprlim 23500 ostth2lem2 23819 ostth3 23823 dvdivbd 31720 stoweidlem1 31783 stoweidlem24 31806 etransclem23 32040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-seq 12108 df-exp 12167 |
Copyright terms: Public domain | W3C validator |