![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > leiso | Unicode version |
Description: Two ways to write a strictly increasing function on the reals. (Contributed by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
leiso |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-le 9655 | . . . . . . 7 | |
2 | 1 | ineq1i 3695 | . . . . . 6 |
3 | indif1 3741 | . . . . . 6 | |
4 | 2, 3 | eqtri 2486 | . . . . 5 |
5 | xpss12 5113 | . . . . . . . 8 | |
6 | 5 | anidms 645 | . . . . . . 7 |
7 | dfss1 3702 | . . . . . . 7 | |
8 | 6, 7 | sylib 196 | . . . . . 6 |
9 | 8 | difeq1d 3620 | . . . . 5 |
10 | 4, 9 | syl5req 2511 | . . . 4 |
11 | isoeq2 6216 | . . . 4 | |
12 | 10, 11 | syl 16 | . . 3 |
13 | 1 | ineq1i 3695 | . . . . . 6 |
14 | indif1 3741 | . . . . . 6 | |
15 | 13, 14 | eqtri 2486 | . . . . 5 |
16 | xpss12 5113 | . . . . . . . 8 | |
17 | 16 | anidms 645 | . . . . . . 7 |
18 | dfss1 3702 | . . . . . . 7 | |
19 | 17, 18 | sylib 196 | . . . . . 6 |
20 | 19 | difeq1d 3620 | . . . . 5 |
21 | 15, 20 | syl5req 2511 | . . . 4 |
22 | isoeq3 6217 | . . . 4 | |
23 | 21, 22 | syl 16 | . . 3 |
24 | 12, 23 | sylan9bb 699 | . 2 |
25 | isocnv2 6227 | . . 3 | |
26 | eqid 2457 | . . . 4 | |
27 | eqid 2457 | . . . 4 | |
28 | 26, 27 | isocnv3 6228 | . . 3 |
29 | 25, 28 | bitri 249 | . 2 |
30 | isores1 6230 | . . 3 | |
31 | isores2 6229 | . . 3 | |
32 | 30, 31 | bitri 249 | . 2 |
33 | 24, 29, 32 | 3bitr4g 288 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 \ cdif 3472
i^i cin 3474 C_ wss 3475 X. cxp 5002
`' ccnv 5003 Isom wiso 5594 cxr 9648
clt 9649 cle 9650 |
This theorem is referenced by: leisorel 12509 icopnfhmeo 21443 iccpnfhmeo 21445 xrhmeo 21446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-le 9655 |
Copyright terms: Public domain | W3C validator |