MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lenlti Unicode version

Theorem lenlti 9725
Description: 'Less than or equal to' in terms of 'less than'. (Contributed by NM, 24-May-1999.)
Hypotheses
Ref Expression
lt.1
lt.2
Assertion
Ref Expression
lenlti

Proof of Theorem lenlti
StepHypRef Expression
1 lt.1 . 2
2 lt.2 . 2
3 lenlt 9684 . 2
41, 2, 3mp2an 672 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  <->wb 184  e.wcel 1818   class class class wbr 4452   cr 9512   clt 9649   cle 9650
This theorem is referenced by:  ltnlei  9726  ltadd2iOLD  9737  hashgt12el  12481  hashgt12el2  12482  georeclim  13681  geoisumr  13687  divalglem6  14056  konigsberg  24987  ballotlem4  28437  signswch  28518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-xp 5010  df-cnv 5012  df-xr 9653  df-le 9655
  Copyright terms: Public domain W3C validator