![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > leweon | Unicode version |
Description: Lexicographical order is
a well-ordering of X. . Proposition
7.56(1) of [TakeutiZaring] p. 54.
Note that unlike r0weon 8411, this
order is not set-like, as the preimage of is the
proper class . (Contributed by Mario
Carneiro,
9-Mar-2013.) |
Ref | Expression |
---|---|
leweon.1 |
Ref | Expression |
---|---|
leweon |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epweon 6619 | . 2 | |
2 | leweon.1 | . . . 4 | |
3 | fvex 5881 | . . . . . . . 8 | |
4 | 3 | epelc 4798 | . . . . . . 7 |
5 | fvex 5881 | . . . . . . . . 9 | |
6 | 5 | epelc 4798 | . . . . . . . 8 |
7 | 6 | anbi2i 694 | . . . . . . 7 |
8 | 4, 7 | orbi12i 521 | . . . . . 6 |
9 | 8 | anbi2i 694 | . . . . 5 |
10 | 9 | opabbii 4516 | . . . 4 |
11 | 2, 10 | eqtr4i 2489 | . . 3 |
12 | 11 | wexp 6914 | . 2 |
13 | 1, 1, 12 | mp2an 672 | 1 |
Colors of variables: wff setvar class |
Syntax hints: \/ wo 368 /\ wa 369
= wceq 1395 e. wcel 1818 class class class wbr 4452
{ copab 4509 cep 4794
We wwe 4842 con0 4883 X. cxp 5002 ` cfv 5593
c1st 6798
c2nd 6799 |
This theorem is referenced by: r0weon 8411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fv 5601 df-1st 6800 df-2nd 6801 |
Copyright terms: Public domain | W3C validator |