MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limuni Unicode version

Theorem limuni 4943
Description: A limit ordinal is its own supremum (union). (Contributed by NM, 4-May-1995.)
Assertion
Ref Expression
limuni

Proof of Theorem limuni
StepHypRef Expression
1 df-lim 4888 . 2
21simp3bi 1013 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  =wceq 1395  =/=wne 2652   c0 3784  U.cuni 4249  Ordword 4882  Limwlim 4884
This theorem is referenced by:  limuni2  4944  unizlim  4999  nlimsucg  6677  oa0r  7207  om1r  7211  oarec  7230  oeworde  7261  oeeulem  7269  infeq5i  8074  r1sdom  8213  rankxplim3  8320  cflm  8651  coflim  8662  cflim2  8664  cfss  8666  cfslbn  8668  limsucncmpi  29910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975  df-lim 4888
  Copyright terms: Public domain W3C validator