MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limuni2 Unicode version

Theorem limuni2 4944
Description: The union of a limit ordinal is a limit ordinal. (Contributed by NM, 19-Sep-2006.)
Assertion
Ref Expression
limuni2

Proof of Theorem limuni2
StepHypRef Expression
1 limuni 4943 . . 3
2 limeq 4895 . . 3
31, 2syl 16 . 2
43ibi 241 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  =wceq 1395  U.cuni 4249  Limwlim 4884
This theorem is referenced by:  rankxplim2  8319  rankxplim3  8320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-in 3482  df-ss 3489  df-uni 4250  df-tr 4546  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-lim 4888
  Copyright terms: Public domain W3C validator