Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnophmlem1 Unicode version

Theorem lnophmlem1 23511
 Description: Lemma for lnophmi 23513. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnophmlem.1
lnophmlem.2
lnophmlem.3
lnophmlem.4
Assertion
Ref Expression
lnophmlem1
Distinct variable groups:   ,   ,   ,

Proof of Theorem lnophmlem1
StepHypRef Expression
1 lnophmlem.1 . 2
2 lnophmlem.4 . 2
3 id 20 . . . . 5
4 fveq2 5720 . . . . 5
53, 4oveq12d 6091 . . . 4
65eleq1d 2501 . . 3
76rspcv 3040 . 2
81, 2, 7mp2 9 1
 Colors of variables: wff set class Syntax hints:  =wceq 1652  e.wcel 1725  A.wral 2697  `cfv 5446  (class class class)co 6073   cr 8981   chil 22414   csp 22417   clo 22442 This theorem is referenced by:  lnophmlem2  23512 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-iota 5410  df-fv 5454  df-ov 6076
 Copyright terms: Public domain W3C validator