![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > lo1bdd2 | Unicode version |
Description: If an eventually bounded
function is bounded on every interval
A i^i ( , ) by a function M ( ) , then the
function is
bounded on the whole domain. (Contributed by Mario Carneiro,
9-Apr-2016.) |
Ref | Expression |
---|---|
lo1bdd2.1 | |
lo1bdd2.2 | |
lo1bdd2.3 | |
lo1bdd2.4 | |
lo1bdd2.5 | |
lo1bdd2.6 |
Ref | Expression |
---|---|
lo1bdd2 |
M
,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lo1bdd2.4 | . . 3 | |
2 | lo1bdd2.1 | . . . 4 | |
3 | lo1bdd2.3 | . . . 4 | |
4 | lo1bdd2.2 | . . . 4 | |
5 | 2, 3, 4 | ello1mpt2 13345 | . . 3 |
6 | 1, 5 | mpbid 210 | . 2 |
7 | elicopnf 11649 | . . . . . . . . . . 11 | |
8 | 4, 7 | syl 16 | . . . . . . . . . 10 |
9 | 8 | biimpa 484 | . . . . . . . . 9 |
10 | lo1bdd2.5 | . . . . . . . . 9 | |
11 | 9, 10 | syldan 470 | . . . . . . . 8 |
12 | 11 | ad2antrr 725 | . . . . . . 7 |
13 | simplrl 761 | . . . . . . 7 | |
14 | 12, 13 | ifclda 3973 | . . . . . 6 |
15 | 2 | ad2antrr 725 | . . . . . . . . . . . 12 |
16 | 15 | sselda 3503 | . . . . . . . . . . 11 |
17 | 9 | simpld 459 | . . . . . . . . . . . 12 |
18 | 17 | ad2antrr 725 | . . . . . . . . . . 11 |
19 | 16, 18 | ltnled 9753 | . . . . . . . . . 10 |
20 | lo1bdd2.6 | . . . . . . . . . . . . . . . . 17 | |
21 | 20 | expr 615 | . . . . . . . . . . . . . . . 16 |
22 | 21 | an32s 804 | . . . . . . . . . . . . . . 15 |
23 | 22 | ex 434 | . . . . . . . . . . . . . 14 |
24 | 9, 23 | syldan 470 | . . . . . . . . . . . . 13 |
25 | 24 | imp 429 | . . . . . . . . . . . 12 |
26 | 25 | adantlr 714 | . . . . . . . . . . 11 |
27 | simplr 755 | . . . . . . . . . . . . 13 | |
28 | 11 | ad2antrr 725 | . . . . . . . . . . . . 13 |
29 | max2 11417 | . . . . . . . . . . . . 13 | |
30 | 27, 28, 29 | syl2anc 661 | . . . . . . . . . . . 12 |
31 | simpll 753 | . . . . . . . . . . . . . 14 | |
32 | 31, 3 | sylan 471 | . . . . . . . . . . . . 13 |
33 | 11 | ad3antrrr 729 | . . . . . . . . . . . . . 14 |
34 | simpllr 760 | . . . . . . . . . . . . . 14 | |
35 | 33, 34 | ifclda 3973 | . . . . . . . . . . . . 13 |
36 | letr 9699 | . . . . . . . . . . . . 13 | |
37 | 32, 28, 35, 36 | syl3anc 1228 | . . . . . . . . . . . 12 |
38 | 30, 37 | mpan2d 674 | . . . . . . . . . . 11 |
39 | 26, 38 | syld 44 | . . . . . . . . . 10 |
40 | 19, 39 | sylbird 235 | . . . . . . . . 9 |
41 | max1 11415 | . . . . . . . . . . 11 | |
42 | 27, 28, 41 | syl2anc 661 | . . . . . . . . . 10 |
43 | letr 9699 | . . . . . . . . . . 11 | |
44 | 32, 27, 35, 43 | syl3anc 1228 | . . . . . . . . . 10 |
45 | 42, 44 | mpan2d 674 | . . . . . . . . 9 |
46 | 40, 45 | jad 162 | . . . . . . . 8 |
47 | 46 | ralimdva 2865 | . . . . . . 7 |
48 | 47 | impr 619 | . . . . . 6 |
49 | breq2 4456 | . . . . . . . 8 | |
50 | 49 | ralbidv 2896 | . . . . . . 7 |
51 | 50 | rspcev 3210 | . . . . . 6 |
52 | 14, 48, 51 | syl2anc 661 | . . . . 5 |
53 | 52 | expr 615 | . . . 4 |
54 | 53 | rexlimdva 2949 | . . 3 |
55 | 54 | rexlimdva 2949 | . 2 |
56 | 6, 55 | mpd 15 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 A. wral 2807 E. wrex 2808
C_ wss 3475 if cif 3941 class class class wbr 4452
e. cmpt 4510 (class class class)co 6296
cr 9512 cpnf 9646 clt 9649 cle 9650 cico 11560
clo1 13310 |
This theorem is referenced by: lo1bddrp 13348 o1bdd2 13364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-pre-lttri 9587 ax-pre-lttrn 9588 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-er 7330 df-pm 7442 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-ico 11564 df-lo1 13314 |
Copyright terms: Public domain | W3C validator |