![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > lo1eq | Unicode version |
Description: Two functions that are eventually equal to one another are eventually bounded if one of them is. (Contributed by Mario Carneiro, 26-May-2016.) |
Ref | Expression |
---|---|
lo1eq.1 | |
lo1eq.2 | |
lo1eq.3 | |
lo1eq.4 |
Ref | Expression |
---|---|
lo1eq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lo1dm 13342 | . . 3 | |
2 | eqid 2457 | . . . . 5 | |
3 | lo1eq.1 | . . . . 5 | |
4 | 2, 3 | dmmptd 5716 | . . . 4 |
5 | 4 | sseq1d 3530 | . . 3 |
6 | 1, 5 | syl5ib 219 | . 2 |
7 | lo1dm 13342 | . . 3 | |
8 | eqid 2457 | . . . . 5 | |
9 | lo1eq.2 | . . . . 5 | |
10 | 8, 9 | dmmptd 5716 | . . . 4 |
11 | 10 | sseq1d 3530 | . . 3 |
12 | 7, 11 | syl5ib 219 | . 2 |
13 | simpr 461 | . . . . . . . . . . . . . 14 | |
14 | elin 3686 | . . . . . . . . . . . . . 14 | |
15 | 13, 14 | sylib 196 | . . . . . . . . . . . . 13 |
16 | 15 | simpld 459 | . . . . . . . . . . . 12 |
17 | 15 | simprd 463 | . . . . . . . . . . . . . 14 |
18 | lo1eq.3 | . . . . . . . . . . . . . . . 16 | |
19 | elicopnf 11649 | . . . . . . . . . . . . . . . 16 | |
20 | 18, 19 | syl 16 | . . . . . . . . . . . . . . 15 |
21 | 20 | biimpa 484 | . . . . . . . . . . . . . 14 |
22 | 17, 21 | syldan 470 | . . . . . . . . . . . . 13 |
23 | 22 | simprd 463 | . . . . . . . . . . . 12 |
24 | 16, 23 | jca 532 | . . . . . . . . . . 11 |
25 | lo1eq.4 | . . . . . . . . . . 11 | |
26 | 24, 25 | syldan 470 | . . . . . . . . . 10 |
27 | 26 | mpteq2dva 4538 | . . . . . . . . 9 |
28 | inss1 3717 | . . . . . . . . . 10 | |
29 | resmpt 5328 | . . . . . . . . . 10 | |
30 | 28, 29 | ax-mp 5 | . . . . . . . . 9 |
31 | resmpt 5328 | . . . . . . . . . 10 | |
32 | 28, 31 | ax-mp 5 | . . . . . . . . 9 |
33 | 27, 30, 32 | 3eqtr4g 2523 | . . . . . . . 8 |
34 | resres 5291 | . . . . . . . 8 | |
35 | resres 5291 | . . . . . . . 8 | |
36 | 33, 34, 35 | 3eqtr4g 2523 | . . . . . . 7 |
37 | ssid 3522 | . . . . . . . 8 | |
38 | resmpt 5328 | . . . . . . . 8 | |
39 | reseq1 5272 | . . . . . . . 8 | |
40 | 37, 38, 39 | mp2b 10 | . . . . . . 7 |
41 | resmpt 5328 | . . . . . . . 8 | |
42 | reseq1 5272 | . . . . . . . 8 | |
43 | 37, 41, 42 | mp2b 10 | . . . . . . 7 |
44 | 36, 40, 43 | 3eqtr3g 2521 | . . . . . 6 |
45 | 44 | eleq1d 2526 | . . . . 5 |
46 | 45 | adantr 465 | . . . 4 |
47 | 3, 2 | fmptd 6055 | . . . . . 6 |
48 | 47 | adantr 465 | . . . . 5 |
49 | simpr 461 | . . . . 5 | |
50 | 18 | adantr 465 | . . . . 5 |
51 | 48, 49, 50 | lo1resb 13387 | . . . 4 |
52 | 9, 8 | fmptd 6055 | . . . . . 6 |
53 | 52 | adantr 465 | . . . . 5 |
54 | 53, 49, 50 | lo1resb 13387 | . . . 4 |
55 | 46, 51, 54 | 3bitr4d 285 | . . 3 |
56 | 55 | ex 434 | . 2 |
57 | 6, 12, 56 | pm5.21ndd 354 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
i^i cin 3474 C_ wss 3475 class class class wbr 4452
e. cmpt 4510 dom cdm 5004 |` cres 5006
--> wf 5589 (class class class)co 6296
cr 9512 cpnf 9646 cle 9650 cico 11560
clo1 13310 |
This theorem is referenced by: o1eq 13393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-pre-lttri 9587 ax-pre-lttrn 9588 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-er 7330 df-pm 7442 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-ico 11564 df-lo1 13314 |
Copyright terms: Public domain | W3C validator |