![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > lswccatn0lsw | Unicode version |
Description: The last symbol of a word concatenated with a nonempty word is the last symbol of the nonempty word. (Contributed by AV, 22-Oct-2018.) (Proof shortened by AV, 24-Nov-2018.) |
Ref | Expression |
---|---|
lswccatn0lsw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 6324 | . . 3 | |
2 | lsw 12585 | . . 3 | |
3 | 1, 2 | mp1i 12 | . 2 |
4 | ccatcl 12593 | . . . . . . 7 | |
5 | lencl 12562 | . . . . . . 7 | |
6 | 4, 5 | syl 16 | . . . . . 6 |
7 | 6 | nn0zd 10992 | . . . . 5 |
8 | peano2zm 10932 | . . . . 5 | |
9 | 7, 8 | syl 16 | . . . 4 |
10 | 9 | 3adant3 1016 | . . 3 |
11 | ccatsymb 12600 | . . 3 | |
12 | 10, 11 | syld3an3 1273 | . 2 |
13 | ccatlen 12594 | . . . . . . . 8 | |
14 | 13 | oveq1d 6311 | . . . . . . 7 |
15 | 14 | oveq1d 6311 | . . . . . 6 |
16 | lencl 12562 | . . . . . . 7 | |
17 | lencl 12562 | . . . . . . 7 | |
18 | nn0cn 10830 | . . . . . . . 8 | |
19 | nn0cn 10830 | . . . . . . . 8 | |
20 | addcl 9595 | . . . . . . . . . 10 | |
21 | 1cnd 9633 | . . . . . . . . . 10 | |
22 | simpl 457 | . . . . . . . . . 10 | |
23 | 20, 21, 22 | sub32d 9986 | . . . . . . . . 9 |
24 | pncan2 9850 | . . . . . . . . . 10 | |
25 | 24 | oveq1d 6311 | . . . . . . . . 9 |
26 | 23, 25 | eqtrd 2498 | . . . . . . . 8 |
27 | 18, 19, 26 | syl2an 477 | . . . . . . 7 |
28 | 16, 17, 27 | syl2an 477 | . . . . . 6 |
29 | 15, 28 | eqtrd 2498 | . . . . 5 |
30 | 29 | 3adant3 1016 | . . . 4 |
31 | 30 | fveq2d 5875 | . . 3 |
32 | lennncl 12563 | . . . . . . . 8 | |
33 | nnnlt1 10591 | . . . . . . . . . . . 12 | |
34 | 33 | adantr 465 | . . . . . . . . . . 11 |
35 | nn0re 10829 | . . . . . . . . . . . . 13 | |
36 | 35 | adantl 466 | . . . . . . . . . . . 12 |
37 | nnre 10568 | . . . . . . . . . . . . 13 | |
38 | 37 | adantr 465 | . . . . . . . . . . . 12 |
39 | 1red 9632 | . . . . . . . . . . . 12 | |
40 | ltaddsublt 10201 | . . . . . . . . . . . 12 | |
41 | 36, 38, 39, 40 | syl3anc 1228 | . . . . . . . . . . 11 |
42 | 34, 41 | mtbid 300 | . . . . . . . . . 10 |
43 | 16, 42 | sylan2 474 | . . . . . . . . 9 |
44 | 43 | ex 434 | . . . . . . . 8 |
45 | 32, 44 | syl 16 | . . . . . . 7 |
46 | 45 | com12 31 | . . . . . 6 |
47 | 46 | 3impib 1194 | . . . . 5 |
48 | 14 | breq1d 4462 | . . . . . . 7 |
49 | 48 | notbid 294 | . . . . . 6 |
50 | 49 | 3adant3 1016 | . . . . 5 |
51 | 47, 50 | mpbird 232 | . . . 4 |
52 | 51 | iffalsed 3952 | . . 3 |
53 | lsw 12585 | . . . 4 | |
54 | 53 | 3ad2ant2 1018 | . . 3 |
55 | 31, 52, 54 | 3eqtr4d 2508 | . 2 |
56 | 3, 12, 55 | 3eqtrd 2502 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 /\ w3a 973
= wceq 1395 e. wcel 1818 =/= wne 2652
cvv 3109
c0 3784 if cif 3941 class class class wbr 4452
` cfv 5593 (class class class)co 6296
cc 9511 cr 9512 1 c1 9514 caddc 9516 clt 9649 cmin 9828 cn 10561 cn0 10820
cz 10889 chash 12405 Word cword 12534 clsw 12535 cconcat 12536 |
This theorem is referenced by: lswccats1 12638 lswccats1fst 12639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-card 8341 df-cda 8569 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-2 10619 df-n0 10821 df-z 10890 df-uz 11111 df-fz 11702 df-fzo 11825 df-hash 12406 df-word 12542 df-lsw 12543 df-concat 12544 |
Copyright terms: Public domain | W3C validator |