MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lt0ne0d Unicode version

Theorem lt0ne0d 10143
Description: Something less than zero is not zero. Deduction form. (Contributed by David Moews, 28-Feb-2017.)
Hypothesis
Ref Expression
lt0ne0d.1
Assertion
Ref Expression
lt0ne0d

Proof of Theorem lt0ne0d
StepHypRef Expression
1 lt0ne0d.1 . 2
2 0re 9617 . . . . 5
32ltnri 9714 . . . 4
4 breq1 4455 . . . 4
53, 4mtbiri 303 . . 3
65necon2ai 2692 . 2
71, 6syl 16 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  =wceq 1395  =/=wne 2652   class class class wbr 4452  0cc0 9513   clt 9649
This theorem is referenced by:  mbfmulc2lem  22054  coseq00topi  22895  argimlt0  22998  atantan  23254  mul2lt0rlt0  27565  bcm1n  27600  sgnmul  28481  sgnsub  28483  sgn0bi  28486  sgnmulsgn  28488  signsvfnn  28543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6592  ax-resscn 9570  ax-1cn 9571  ax-icn 9572  ax-addcl 9573  ax-addrcl 9574  ax-mulcl 9575  ax-mulrcl 9576  ax-i2m1 9581  ax-1ne0 9582  ax-rnegex 9584  ax-rrecex 9585  ax-cnre 9586  ax-pre-lttri 9587  ax-pre-lttrn 9588
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-opab 4511  df-mpt 4512  df-id 4800  df-po 4805  df-so 4806  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-ov 6299  df-er 7330  df-en 7537  df-dom 7538  df-sdom 7539  df-pnf 9651  df-mnf 9652  df-ltxr 9654
  Copyright terms: Public domain W3C validator