![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ltaddnq | Unicode version |
Description: The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltaddnq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 | |
2 | oveq1 6303 | . . 3 | |
3 | 1, 2 | breq12d 4465 | . 2 |
4 | oveq2 6304 | . . 3 | |
5 | 4 | breq2d 4464 | . 2 |
6 | 1lt2nq 9372 | . . . . . . . 8 | |
7 | ltmnq 9371 | . . . . . . . 8 | |
8 | 6, 7 | mpbii 211 | . . . . . . 7 |
9 | mulidnq 9362 | . . . . . . 7 | |
10 | distrnq 9360 | . . . . . . . 8 | |
11 | 9, 9 | oveq12d 6314 | . . . . . . . 8 |
12 | 10, 11 | syl5eq 2510 | . . . . . . 7 |
13 | 8, 9, 12 | 3brtr3d 4481 | . . . . . 6 |
14 | ltanq 9370 | . . . . . 6 | |
15 | 13, 14 | syl5ib 219 | . . . . 5 |
16 | 15 | imp 429 | . . . 4 |
17 | addcomnq 9350 | . . . 4 | |
18 | vex 3112 | . . . . 5 | |
19 | vex 3112 | . . . . 5 | |
20 | addcomnq 9350 | . . . . 5 | |
21 | addassnq 9357 | . . . . 5 | |
22 | 18, 19, 19, 20, 21 | caov12 6503 | . . . 4 |
23 | 16, 17, 22 | 3brtr3g 4483 | . . 3 |
24 | ltanq 9370 | . . . 4 | |
25 | 24 | adantl 466 | . . 3 |
26 | 23, 25 | mpbird 232 | . 2 |
27 | 3, 5, 26 | vtocl2ga 3175 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
class class class wbr 4452 (class class class)co 6296
cnq 9251
c1q 9252
cplq 9254
cmq 9255
cltq 9257 |
This theorem is referenced by: ltexnq 9374 nsmallnq 9376 ltbtwnnq 9377 prlem934 9432 ltaddpr 9433 ltexprlem2 9436 ltexprlem4 9438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-omul 7154 df-er 7330 df-ni 9271 df-pli 9272 df-mi 9273 df-lti 9274 df-plpq 9307 df-mpq 9308 df-ltpq 9309 df-enq 9310 df-nq 9311 df-erq 9312 df-plq 9313 df-mq 9314 df-1nq 9315 df-ltnq 9317 |
Copyright terms: Public domain | W3C validator |