![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ltasr | Unicode version |
Description: Ordering property of addition. (Contributed by NM, 10-May-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltasr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmaddsr 9483 | . 2 | |
2 | ltrelsr 9466 | . 2 | |
3 | 0nsr 9477 | . 2 | |
4 | df-nr 9455 | . . . 4 | |
5 | oveq1 6303 | . . . . . 6 | |
6 | oveq1 6303 | . . . . . 6 | |
7 | 5, 6 | breq12d 4465 | . . . . 5 |
8 | 7 | bibi2d 318 | . . . 4 |
9 | breq1 4455 | . . . . 5 | |
10 | oveq2 6304 | . . . . . 6 | |
11 | 10 | breq1d 4462 | . . . . 5 |
12 | 9, 11 | bibi12d 321 | . . . 4 |
13 | breq2 4456 | . . . . 5 | |
14 | oveq2 6304 | . . . . . 6 | |
15 | 14 | breq2d 4464 | . . . . 5 |
16 | 13, 15 | bibi12d 321 | . . . 4 |
17 | addclpr 9417 | . . . . . . 7 | |
18 | 17 | 3ad2ant1 1017 | . . . . . 6 |
19 | ltapr 9444 | . . . . . . 7 | |
20 | ltsrpr 9475 | . . . . . . 7 | |
21 | ltsrpr 9475 | . . . . . . . 8 | |
22 | vex 3112 | . . . . . . . . . 10 | |
23 | vex 3112 | . . . . . . . . . 10 | |
24 | vex 3112 | . . . . . . . . . 10 | |
25 | addcompr 9420 | . . . . . . . . . 10 | |
26 | addasspr 9421 | . . . . . . . . . 10 | |
27 | vex 3112 | . . . . . . . . . 10 | |
28 | 22, 23, 24, 25, 26, 27 | caov4 6506 | . . . . . . . . 9 |
29 | addcompr 9420 | . . . . . . . . . 10 | |
30 | vex 3112 | . . . . . . . . . . 11 | |
31 | addcompr 9420 | . . . . . . . . . . 11 | |
32 | addasspr 9421 | . . . . . . . . . . 11 | |
33 | vex 3112 | . . . . . . . . . . 11 | |
34 | 22, 30, 24, 31, 32, 33 | caov42 6508 | . . . . . . . . . 10 |
35 | 29, 34 | eqtri 2486 | . . . . . . . . 9 |
36 | 28, 35 | breq12i 4461 | . . . . . . . 8 |
37 | 21, 36 | bitri 249 | . . . . . . 7 |
38 | 19, 20, 37 | 3bitr4g 288 | . . . . . 6 |
39 | 18, 38 | syl 16 | . . . . 5 |
40 | addsrpr 9473 | . . . . . . 7 | |
41 | 40 | 3adant3 1016 | . . . . . 6 |
42 | addsrpr 9473 | . . . . . . 7 | |
43 | 42 | 3adant2 1015 | . . . . . 6 |
44 | 41, 43 | breq12d 4465 | . . . . 5 |
45 | 39, 44 | bitr4d 256 | . . . 4 |
46 | 4, 8, 12, 16, 45 | 3ecoptocl 7422 | . . 3 |
47 | 46 | 3coml 1203 | . 2 |
48 | 1, 2, 3, 47 | ndmovord 6465 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 <. cop 4035 class class class wbr 4452
(class class class)co 6296 [ cec 7328
cnp 9258
cpp 9260
cltp 9262
cer 9263
cnr 9264 cplr 9268
cltr 9270 |
This theorem is referenced by: addgt0sr 9502 sqgt0sr 9504 mappsrpr 9506 ltpsrpr 9507 map2psrpr 9508 supsrlem 9509 axpre-ltadd 9565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-omul 7154 df-er 7330 df-ec 7332 df-qs 7336 df-ni 9271 df-pli 9272 df-mi 9273 df-lti 9274 df-plpq 9307 df-mpq 9308 df-ltpq 9309 df-enq 9310 df-nq 9311 df-erq 9312 df-plq 9313 df-mq 9314 df-1nq 9315 df-rq 9316 df-ltnq 9317 df-np 9380 df-plp 9382 df-ltp 9384 df-enr 9454 df-nr 9455 df-plr 9456 df-ltr 9458 |
Copyright terms: Public domain | W3C validator |