![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ltbtwnnq | Unicode version |
Description: There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 17-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltbtwnnq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelnq 9325 | . . . . 5 | |
2 | 1 | brel 5053 | . . . 4 |
3 | 2 | simprd 463 | . . 3 |
4 | ltexnq 9374 | . . . 4 | |
5 | eleq1 2529 | . . . . . . . . . 10 | |
6 | 5 | biimparc 487 | . . . . . . . . 9 |
7 | addnqf 9347 | . . . . . . . . . . 11 | |
8 | 7 | fdmi 5741 | . . . . . . . . . 10 |
9 | 0nnq 9323 | . . . . . . . . . 10 | |
10 | 8, 9 | ndmovrcl 6461 | . . . . . . . . 9 |
11 | 6, 10 | syl 16 | . . . . . . . 8 |
12 | 11 | simprd 463 | . . . . . . 7 |
13 | nsmallnq 9376 | . . . . . . . 8 | |
14 | 11 | simpld 459 | . . . . . . . . . . . 12 |
15 | 1 | brel 5053 | . . . . . . . . . . . . 13 |
16 | 15 | simpld 459 | . . . . . . . . . . . 12 |
17 | ltaddnq 9373 | . . . . . . . . . . . 12 | |
18 | 14, 16, 17 | syl2an 477 | . . . . . . . . . . 11 |
19 | ltanq 9370 | . . . . . . . . . . . . . 14 | |
20 | 19 | biimpa 484 | . . . . . . . . . . . . 13 |
21 | 14, 20 | sylan 471 | . . . . . . . . . . . 12 |
22 | simplr 755 | . . . . . . . . . . . 12 | |
23 | 21, 22 | breqtrd 4476 | . . . . . . . . . . 11 |
24 | ovex 6324 | . . . . . . . . . . . 12 | |
25 | breq2 4456 | . . . . . . . . . . . . 13 | |
26 | breq1 4455 | . . . . . . . . . . . . 13 | |
27 | 25, 26 | anbi12d 710 | . . . . . . . . . . . 12 |
28 | 24, 27 | spcev 3201 | . . . . . . . . . . 11 |
29 | 18, 23, 28 | syl2anc 661 | . . . . . . . . . 10 |
30 | 29 | ex 434 | . . . . . . . . 9 |
31 | 30 | exlimdv 1724 | . . . . . . . 8 |
32 | 13, 31 | syl5 32 | . . . . . . 7 |
33 | 12, 32 | mpd 15 | . . . . . 6 |
34 | 33 | ex 434 | . . . . 5 |
35 | 34 | exlimdv 1724 | . . . 4 |
36 | 4, 35 | sylbid 215 | . . 3 |
37 | 3, 36 | mpcom 36 | . 2 |
38 | ltsonq 9368 | . . . 4 | |
39 | 38, 1 | sotri 5399 | . . 3 |
40 | 39 | exlimiv 1722 | . 2 |
41 | 37, 40 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
= wceq 1395 E. wex 1612 e. wcel 1818
class class class wbr 4452 X. cxp 5002
(class class class)co 6296 cnq 9251
cplq 9254
cltq 9257 |
This theorem is referenced by: nqpr 9413 reclem2pr 9447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-omul 7154 df-er 7330 df-ni 9271 df-pli 9272 df-mi 9273 df-lti 9274 df-plpq 9307 df-mpq 9308 df-ltpq 9309 df-enq 9310 df-nq 9311 df-erq 9312 df-plq 9313 df-mq 9314 df-1nq 9315 df-rq 9316 df-ltnq 9317 |
Copyright terms: Public domain | W3C validator |