![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ltpiord | Unicode version |
Description: Positive integer 'less than' in terms of ordinal membership. (Contributed by NM, 6-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltpiord |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lti 9274 | . . 3 | |
2 | 1 | breqi 4458 | . 2 |
3 | brinxp 5067 | . . 3 | |
4 | epelg 4797 | . . . 4 | |
5 | 4 | adantl 466 | . . 3 |
6 | 3, 5 | bitr3d 255 | . 2 |
7 | 2, 6 | syl5bb 257 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 e. wcel 1818 i^i cin 3474
class class class wbr 4452 cep 4794
X. cxp 5002 cnpi 9243 clti 9246 |
This theorem is referenced by: ltexpi 9301 ltapi 9302 ltmpi 9303 1lt2pi 9304 nlt1pi 9305 indpi 9306 nqereu 9328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-eprel 4796 df-xp 5010 df-lti 9274 |
Copyright terms: Public domain | W3C validator |