MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lukshefth2 Unicode version

Theorem lukshefth2 1529
Description: Lemma for renicax 1530. (Contributed by NM, 31-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
lukshefth2

Proof of Theorem lukshefth2
StepHypRef Expression
1 lukshef-ax1 1527 . . . 4
2 lukshef-ax1 1527 . . . 4
31, 2nic-mp 1504 . . 3
4 lukshefth1 1528 . . . 4
5 lukshef-ax1 1527 . . . . 5
6 lukshef-ax1 1527 . . . . 5
75, 6nic-mp 1504 . . . 4
84, 7nic-mp 1504 . . 3
93, 8nic-mp 1504 . 2
10 lukshef-ax1 1527 . 2
119, 10nic-mp 1504 1
Colors of variables: wff setvar class
Syntax hints:  -/\wnan 1343
This theorem is referenced by:  renicax  1530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-nan 1344
  Copyright terms: Public domain W3C validator