![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > map2psrpr | Unicode version |
Description: Equivalence for positive signed real. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
map2psrpr.2 |
Ref | Expression |
---|---|
map2psrpr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelsr 9466 | . . . . 5 | |
2 | 1 | brel 5053 | . . . 4 |
3 | 2 | simprd 463 | . . 3 |
4 | map2psrpr.2 | . . . . . 6 | |
5 | ltasr 9498 | . . . . . 6 | |
6 | 4, 5 | ax-mp 5 | . . . . 5 |
7 | pn0sr 9499 | . . . . . . . . . 10 | |
8 | 4, 7 | ax-mp 5 | . . . . . . . . 9 |
9 | 8 | oveq1i 6306 | . . . . . . . 8 |
10 | addasssr 9486 | . . . . . . . 8 | |
11 | addcomsr 9485 | . . . . . . . 8 | |
12 | 9, 10, 11 | 3eqtr3i 2494 | . . . . . . 7 |
13 | 0idsr 9495 | . . . . . . 7 | |
14 | 12, 13 | syl5eq 2510 | . . . . . 6 |
15 | 14 | breq2d 4464 | . . . . 5 |
16 | 6, 15 | syl5bb 257 | . . . 4 |
17 | m1r 9480 | . . . . . . . 8 | |
18 | mulclsr 9482 | . . . . . . . 8 | |
19 | 4, 17, 18 | mp2an 672 | . . . . . . 7 |
20 | addclsr 9481 | . . . . . . 7 | |
21 | 19, 20 | mpan 670 | . . . . . 6 |
22 | df-nr 9455 | . . . . . . 7 | |
23 | breq2 4456 | . . . . . . . 8 | |
24 | eqeq2 2472 | . . . . . . . . 9 | |
25 | 24 | rexbidv 2968 | . . . . . . . 8 |
26 | 23, 25 | imbi12d 320 | . . . . . . 7 |
27 | df-m1r 9461 | . . . . . . . . . . 11 | |
28 | 27 | breq1i 4459 | . . . . . . . . . 10 |
29 | addasspr 9421 | . . . . . . . . . . . 12 | |
30 | 29 | breq2i 4460 | . . . . . . . . . . 11 |
31 | ltsrpr 9475 | . . . . . . . . . . 11 | |
32 | 1pr 9414 | . . . . . . . . . . . 12 | |
33 | ltapr 9444 | . . . . . . . . . . . 12 | |
34 | 32, 33 | ax-mp 5 | . . . . . . . . . . 11 |
35 | 30, 31, 34 | 3bitr4i 277 | . . . . . . . . . 10 |
36 | 28, 35 | bitri 249 | . . . . . . . . 9 |
37 | ltexpri 9442 | . . . . . . . . 9 | |
38 | 36, 37 | sylbi 195 | . . . . . . . 8 |
39 | enreceq 9464 | . . . . . . . . . . . 12 | |
40 | 32, 39 | mpanl2 681 | . . . . . . . . . . 11 |
41 | addcompr 9420 | . . . . . . . . . . . 12 | |
42 | 41 | eqeq1i 2464 | . . . . . . . . . . 11 |
43 | 40, 42 | syl6bbr 263 | . . . . . . . . . 10 |
44 | 43 | ancoms 453 | . . . . . . . . 9 |
45 | 44 | rexbidva 2965 | . . . . . . . 8 |
46 | 38, 45 | syl5ibr 221 | . . . . . . 7 |
47 | 22, 26, 46 | ecoptocl 7420 | . . . . . 6 |
48 | 21, 47 | syl 16 | . . . . 5 |
49 | oveq2 6304 | . . . . . . . 8 | |
50 | 49, 14 | sylan9eqr 2520 | . . . . . . 7 |
51 | 50 | ex 434 | . . . . . 6 |
52 | 51 | reximdv 2931 | . . . . 5 |
53 | 48, 52 | syld 44 | . . . 4 |
54 | 16, 53 | sylbird 235 | . . 3 |
55 | 3, 54 | mpcom 36 | . 2 |
56 | 4 | mappsrpr 9506 | . . . . 5 |
57 | breq2 4456 | . . . . 5 | |
58 | 56, 57 | syl5bbr 259 | . . . 4 |
59 | 58 | biimpac 486 | . . 3 |
60 | 59 | rexlimiva 2945 | . 2 |
61 | 55, 60 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
E. wrex 2808 <. cop 4035 class class class wbr 4452
(class class class)co 6296 [ cec 7328
cnp 9258
c1p 9259
cpp 9260
cltp 9262
cer 9263
cnr 9264 c0r 9265
cm1r 9267
cplr 9268
cmr 9269
cltr 9270 |
This theorem is referenced by: supsrlem 9509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-omul 7154 df-er 7330 df-ec 7332 df-qs 7336 df-ni 9271 df-pli 9272 df-mi 9273 df-lti 9274 df-plpq 9307 df-mpq 9308 df-ltpq 9309 df-enq 9310 df-nq 9311 df-erq 9312 df-plq 9313 df-mq 9314 df-1nq 9315 df-rq 9316 df-ltnq 9317 df-np 9380 df-1p 9381 df-plp 9382 df-mp 9383 df-ltp 9384 df-enr 9454 df-nr 9455 df-plr 9456 df-mr 9457 df-ltr 9458 df-0r 9459 df-1r 9460 df-m1r 9461 |
Copyright terms: Public domain | W3C validator |