![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > map2xp | Unicode version |
Description: A cardinal power with exponent 2 is equivalent to a Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.) |
Ref | Expression |
---|---|
map2xp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2o3 7162 | . . . . 5 | |
2 | df-pr 4032 | . . . . 5 | |
3 | 1, 2 | eqtri 2486 | . . . 4 |
4 | 3 | oveq2i 6307 | . . 3 |
5 | snex 4693 | . . . . 5 | |
6 | 5 | a1i 11 | . . . 4 |
7 | snex 4693 | . . . . 5 | |
8 | 7 | a1i 11 | . . . 4 |
9 | id 22 | . . . 4 | |
10 | 1n0 7164 | . . . . . . . 8 | |
11 | 10 | neii 2656 | . . . . . . 7 |
12 | elsni 4054 | . . . . . . 7 | |
13 | 11, 12 | mto 176 | . . . . . 6 |
14 | disjsn 4090 | . . . . . 6 | |
15 | 13, 14 | mpbir 209 | . . . . 5 |
16 | 15 | a1i 11 | . . . 4 |
17 | mapunen 7706 | . . . 4 | |
18 | 6, 8, 9, 16, 17 | syl31anc 1231 | . . 3 |
19 | 4, 18 | syl5eqbr 4485 | . 2 |
20 | oveq1 6303 | . . . . 5 | |
21 | id 22 | . . . . 5 | |
22 | 20, 21 | breq12d 4465 | . . . 4 |
23 | vex 3112 | . . . . 5 | |
24 | 0ex 4582 | . . . . 5 | |
25 | 23, 24 | mapsnen 7613 | . . . 4 |
26 | 22, 25 | vtoclg 3167 | . . 3 |
27 | oveq1 6303 | . . . . 5 | |
28 | 27, 21 | breq12d 4465 | . . . 4 |
29 | df1o2 7161 | . . . . . 6 | |
30 | 29, 5 | eqeltri 2541 | . . . . 5 |
31 | 23, 30 | mapsnen 7613 | . . . 4 |
32 | 28, 31 | vtoclg 3167 | . . 3 |
33 | xpen 7700 | . . 3 | |
34 | 26, 32, 33 | syl2anc 661 | . 2 |
35 | entr 7587 | . 2 | |
36 | 19, 34, 35 | syl2anc 661 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
= wceq 1395 e. wcel 1818 cvv 3109
u. cun 3473 i^i cin 3474 c0 3784 { csn 4029 { cpr 4031
class class class wbr 4452 X. cxp 5002
(class class class)co 6296 c1o 7142
c2o 7143
cmap 7439
cen 7533 |
This theorem is referenced by: pwxpndom2 9064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 df-1o 7149 df-2o 7150 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 |
Copyright terms: Public domain | W3C validator |