![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mapsncnv | Unicode version |
Description: Expression for the inverse of the canonical map between a set and its set of singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
mapsncnv.s | |
mapsncnv.b | |
mapsncnv.x | |
mapsncnv.f |
Ref | Expression |
---|---|
mapsncnv |
S
, ,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 7460 | . . . . . . . . 9 | |
2 | mapsncnv.x | . . . . . . . . . 10 | |
3 | 2 | snid 4057 | . . . . . . . . 9 |
4 | ffvelrn 6029 | . . . . . . . . 9 | |
5 | 1, 3, 4 | sylancl 662 | . . . . . . . 8 |
6 | eqid 2457 | . . . . . . . . 9 | |
7 | mapsncnv.b | . . . . . . . . 9 | |
8 | 6, 7, 2 | mapsnconst 7484 | . . . . . . . 8 |
9 | 5, 8 | jca 532 | . . . . . . 7 |
10 | eleq1 2529 | . . . . . . . 8 | |
11 | sneq 4039 | . . . . . . . . . 10 | |
12 | 11 | xpeq2d 5028 | . . . . . . . . 9 |
13 | 12 | eqeq2d 2471 | . . . . . . . 8 |
14 | 10, 13 | anbi12d 710 | . . . . . . 7 |
15 | 9, 14 | syl5ibrcom 222 | . . . . . 6 |
16 | 15 | imp 429 | . . . . 5 |
17 | fconst6g 5779 | . . . . . . . . 9 | |
18 | snex 4693 | . . . . . . . . . 10 | |
19 | 7, 18 | elmap 7467 | . . . . . . . . 9 |
20 | 17, 19 | sylibr 212 | . . . . . . . 8 |
21 | vex 3112 | . . . . . . . . . . 11 | |
22 | 21 | fvconst2 6126 | . . . . . . . . . 10 |
23 | 3, 22 | mp1i 12 | . . . . . . . . 9 |
24 | 23 | eqcomd 2465 | . . . . . . . 8 |
25 | 20, 24 | jca 532 | . . . . . . 7 |
26 | eleq1 2529 | . . . . . . . 8 | |
27 | fveq1 5870 | . . . . . . . . 9 | |
28 | 27 | eqeq2d 2471 | . . . . . . . 8 |
29 | 26, 28 | anbi12d 710 | . . . . . . 7 |
30 | 25, 29 | syl5ibrcom 222 | . . . . . 6 |
31 | 30 | imp 429 | . . . . 5 |
32 | 16, 31 | impbii 188 | . . . 4 |
33 | mapsncnv.s | . . . . . . 7 | |
34 | 33 | oveq2i 6307 | . . . . . 6 |
35 | 34 | eleq2i 2535 | . . . . 5 |
36 | 35 | anbi1i 695 | . . . 4 |
37 | 33 | xpeq1i 5024 | . . . . . 6 |
38 | 37 | eqeq2i 2475 | . . . . 5 |
39 | 38 | anbi2i 694 | . . . 4 |
40 | 32, 36, 39 | 3bitr4i 277 | . . 3 |
41 | 40 | opabbii 4516 | . 2 |
42 | mapsncnv.f | . . . . 5 | |
43 | df-mpt 4512 | . . . . 5 | |
44 | 42, 43 | eqtri 2486 | . . . 4 |
45 | 44 | cnveqi 5182 | . . 3 |
46 | cnvopab 5412 | . . 3 | |
47 | 45, 46 | eqtri 2486 | . 2 |
48 | df-mpt 4512 | . 2 | |
49 | 41, 47, 48 | 3eqtr4i 2496 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 = wceq 1395
e. wcel 1818 cvv 3109
{ csn 4029 { copab 4509 e. cmpt 4510
X. cxp 5002 `' ccnv 5003 --> wf 5589
` cfv 5593 (class class class)co 6296
cmap 7439 |
This theorem is referenced by: mapsnf1o2 7486 mapsnf1o3 7487 coe1sfi 18252 coe1sfiOLD 18253 evl1var 18372 pf1mpf 18388 pf1ind 18391 deg1val 22496 deg1valOLD 22497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 df-map 7441 |
Copyright terms: Public domain | W3C validator |