![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mapsnen | Unicode version |
Description: Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
mapsnen.1 | |
mapsnen.2 |
Ref | Expression |
---|---|
mapsnen |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 6324 | . 2 | |
2 | mapsnen.1 | . 2 | |
3 | fvex 5881 | . . 3 | |
4 | 3 | a1i 11 | . 2 |
5 | snex 4693 | . . 3 | |
6 | 5 | a1i 11 | . 2 |
7 | mapsnen.2 | . . . . . . 7 | |
8 | 2, 7 | mapsn 7480 | . . . . . 6 |
9 | 8 | abeq2i 2584 | . . . . 5 |
10 | 9 | anbi1i 695 | . . . 4 |
11 | r19.41v 3009 | . . . 4 | |
12 | df-rex 2813 | . . . 4 | |
13 | 10, 11, 12 | 3bitr2i 273 | . . 3 |
14 | fveq1 5870 | . . . . . . . . . 10 | |
15 | vex 3112 | . . . . . . . . . . 11 | |
16 | 7, 15 | fvsn 6104 | . . . . . . . . . 10 |
17 | 14, 16 | syl6eq 2514 | . . . . . . . . 9 |
18 | 17 | eqeq2d 2471 | . . . . . . . 8 |
19 | equcom 1794 | . . . . . . . 8 | |
20 | 18, 19 | syl6bb 261 | . . . . . . 7 |
21 | 20 | pm5.32i 637 | . . . . . 6 |
22 | 21 | anbi2i 694 | . . . . 5 |
23 | anass 649 | . . . . 5 | |
24 | ancom 450 | . . . . 5 | |
25 | 22, 23, 24 | 3bitr2i 273 | . . . 4 |
26 | 25 | exbii 1667 | . . 3 |
27 | vex 3112 | . . . 4 | |
28 | eleq1 2529 | . . . . 5 | |
29 | opeq2 4218 | . . . . . . 7 | |
30 | 29 | sneqd 4041 | . . . . . 6 |
31 | 30 | eqeq2d 2471 | . . . . 5 |
32 | 28, 31 | anbi12d 710 | . . . 4 |
33 | 27, 32 | ceqsexv 3146 | . . 3 |
34 | 13, 26, 33 | 3bitri 271 | . 2 |
35 | 1, 2, 4, 6, 34 | en2i 7573 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 = wceq 1395
E. wex 1612 e. wcel 1818 E. wrex 2808
cvv 3109
{ csn 4029 <. cop 4035 class class class wbr 4452
` cfv 5593 (class class class)co 6296
cmap 7439
cen 7533 |
This theorem is referenced by: map2xp 7707 mapdom3 7709 ackbij1lem5 8625 pwxpndom2 9064 hashmap 12493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-map 7441 df-en 7537 |
Copyright terms: Public domain | W3C validator |