![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > marypha2lem2 | Unicode version |
Description: Lemma for marypha2 7919. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.) |
Ref | Expression |
---|---|
marypha2lem.t |
Ref | Expression |
---|---|
marypha2lem2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marypha2lem.t | . 2 | |
2 | sneq 4039 | . . . 4 | |
3 | fveq2 5871 | . . . 4 | |
4 | 2, 3 | xpeq12d 5029 | . . 3 |
5 | 4 | cbviunv 4369 | . 2 |
6 | df-xp 5010 | . . . . 5 | |
7 | 6 | a1i 11 | . . . 4 |
8 | 7 | iuneq2i 4349 | . . 3 |
9 | iunopab 4788 | . . 3 | |
10 | elsn 4043 | . . . . . . . 8 | |
11 | equcom 1794 | . . . . . . . 8 | |
12 | 10, 11 | bitri 249 | . . . . . . 7 |
13 | 12 | anbi1i 695 | . . . . . 6 |
14 | 13 | rexbii 2959 | . . . . 5 |
15 | fveq2 5871 | . . . . . . 7 | |
16 | 15 | eleq2d 2527 | . . . . . 6 |
17 | 16 | ceqsrexbv 3234 | . . . . 5 |
18 | 14, 17 | bitri 249 | . . . 4 |
19 | 18 | opabbii 4516 | . . 3 |
20 | 8, 9, 19 | 3eqtri 2490 | . 2 |
21 | 1, 5, 20 | 3eqtri 2490 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 = wceq 1395
e. wcel 1818 E. wrex 2808 { csn 4029
U_ ciun 4330 { copab 4509 X. cxp 5002
` cfv 5593 |
This theorem is referenced by: marypha2lem3 7917 marypha2lem4 7918 eulerpartlemgu 28316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-xp 5010 df-iota 5556 df-fv 5601 |
Copyright terms: Public domain | W3C validator |