![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > marypha2lem3 | Unicode version |
Description: Lemma for marypha2 7919. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.) |
Ref | Expression |
---|---|
marypha2lem.t |
Ref | Expression |
---|---|
marypha2lem3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn5 5918 | . . . . . . 7 | |
2 | 1 | biimpi 194 | . . . . . 6 |
3 | 2 | adantl 466 | . . . . 5 |
4 | df-mpt 4512 | . . . . 5 | |
5 | 3, 4 | syl6eq 2514 | . . . 4 |
6 | marypha2lem.t | . . . . . 6 | |
7 | 6 | marypha2lem2 7916 | . . . . 5 |
8 | 7 | a1i 11 | . . . 4 |
9 | 5, 8 | sseq12d 3532 | . . 3 |
10 | ssopab2b 4779 | . . 3 | |
11 | 9, 10 | syl6bb 261 | . 2 |
12 | 19.21v 1729 | . . . . 5 | |
13 | imdistan 689 | . . . . . 6 | |
14 | 13 | albii 1640 | . . . . 5 |
15 | fvex 5881 | . . . . . . 7 | |
16 | eleq1 2529 | . . . . . . 7 | |
17 | 15, 16 | ceqsalv 3137 | . . . . . 6 |
18 | 17 | imbi2i 312 | . . . . 5 |
19 | 12, 14, 18 | 3bitr3i 275 | . . . 4 |
20 | 19 | albii 1640 | . . 3 |
21 | df-ral 2812 | . . 3 | |
22 | 20, 21 | bitr4i 252 | . 2 |
23 | 11, 22 | syl6bb 261 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
e. wcel 1818 A. wral 2807 C_ wss 3475
{ csn 4029 U_ ciun 4330 { copab 4509 e. cmpt 4510
X. cxp 5002 Fn wfn 5588 ` cfv 5593 |
This theorem is referenced by: marypha2 7919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-iota 5556 df-fun 5595 df-fn 5596 df-fv 5601 |
Copyright terms: Public domain | W3C validator |