Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  merco1lem1 Unicode version

Theorem merco1lem1 1547
 Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1546. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
merco1lem1

Proof of Theorem merco1lem1
StepHypRef Expression
1 merco1 1546 . . . . 5
2 merco1 1546 . . . . 5
31, 2ax-mp 5 . . . 4
4 merco1 1546 . . . 4
53, 4ax-mp 5 . . 3
6 merco1 1546 . . . . 5
7 merco1 1546 . . . . 5
86, 7ax-mp 5 . . . 4
9 merco1 1546 . . . 4
108, 9ax-mp 5 . . 3
115, 10ax-mp 5 . 2
12 merco1 1546 . . . . 5
13 merco1 1546 . . . . 5
1412, 13ax-mp 5 . . . 4
15 merco1 1546 . . . 4
1614, 15ax-mp 5 . . 3
17 merco1 1546 . . . . 5
18 merco1 1546 . . . . 5
1917, 18ax-mp 5 . . . 4
20 merco1 1546 . . . 4
2119, 20ax-mp 5 . . 3
2216, 21ax-mp 5 . 2
2311, 22ax-mp 5 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4   wfal 1400 This theorem is referenced by:  retbwax4  1548  retbwax2  1549 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 185  df-tru 1398  df-fal 1401
 Copyright terms: Public domain W3C validator