Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  merco1lem14 Unicode version

Theorem merco1lem14 1563
 Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1546. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
merco1lem14

Proof of Theorem merco1lem14
StepHypRef Expression
1 merco1lem13 1562 . . . 4
2 merco1lem8 1557 . . . . . 6
3 merco1 1546 . . . . . 6
42, 3ax-mp 5 . . . . 5
5 merco1lem9 1558 . . . . 5
64, 5ax-mp 5 . . . 4
71, 6ax-mp 5 . . 3
8 merco1lem12 1561 . . 3
97, 8ax-mp 5 . 2
10 merco1 1546 . 2
119, 10ax-mp 5 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4   wfal 1400 This theorem is referenced by:  merco1lem15  1564  retbwax1  1568 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 185  df-tru 1398  df-fal 1401
 Copyright terms: Public domain W3C validator