Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  merco1lem3 Unicode version

Theorem merco1lem3 1551
 Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1546. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
merco1lem3

Proof of Theorem merco1lem3
StepHypRef Expression
1 merco1lem2 1550 . . 3
2 retbwax2 1549 . . . 4
3 merco1lem2 1550 . . . 4
42, 3ax-mp 5 . . 3
51, 4ax-mp 5 . 2
6 merco1lem2 1550 . . 3
7 retbwax2 1549 . . . 4
8 merco1lem2 1550 . . . 4
97, 8ax-mp 5 . . 3
106, 9ax-mp 5 . 2
115, 10ax-mp 5 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4   wfal 1400 This theorem is referenced by:  merco1lem4  1552  merco1lem6  1554  merco1lem11  1560  merco1lem12  1561  merco1lem18  1567 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 185  df-tru 1398  df-fal 1401
 Copyright terms: Public domain W3C validator