MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mercolem1 Unicode version

Theorem mercolem1 1570
Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco2 1569. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
mercolem1

Proof of Theorem mercolem1
StepHypRef Expression
1 merco2 1569 . 2
2 merco2 1569 . . . 4
3 merco2 1569 . . . . . . 7
4 merco2 1569 . . . . . . 7
53, 4ax-mp 5 . . . . . 6
6 merco2 1569 . . . . . 6
75, 6ax-mp 5 . . . . 5
8 merco2 1569 . . . . 5
97, 8ax-mp 5 . . . 4
102, 9ax-mp 5 . . 3
111, 10ax-mp 5 . 2
121, 11ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4   wfal 1400
This theorem is referenced by:  mercolem4  1573  mercolem5  1574  mercolem6  1575  re1tbw2  1579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-tru 1398  df-fal 1401
  Copyright terms: Public domain W3C validator