MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  merlem1 Unicode version

Theorem merlem1 1475
Description: Step 3 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (The step numbers refer to Meredith's original paper.) (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
merlem1

Proof of Theorem merlem1
StepHypRef Expression
1 ax-meredith 1474 . . 3
2 ax-meredith 1474 . . 3
31, 2ax-mp 5 . 2
4 ax-meredith 1474 . 2
53, 4ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4
This theorem is referenced by:  merlem2  1476  merlem5  1479  luk-3  1490
This theorem was proved from axioms:  ax-mp 5  ax-meredith 1474
  Copyright terms: Public domain W3C validator