MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  merlem10 Unicode version

Theorem merlem10 1484
Description: Step 19 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
merlem10

Proof of Theorem merlem10
StepHypRef Expression
1 ax-meredith 1474 . 2
2 ax-meredith 1474 . . 3
3 merlem9 1483 . . 3
42, 3ax-mp 5 . 2
51, 4ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4
This theorem is referenced by:  merlem11  1485
This theorem was proved from axioms:  ax-mp 5  ax-meredith 1474
  Copyright terms: Public domain W3C validator