MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  merlem12 Unicode version

Theorem merlem12 1486
Description: Step 28 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
merlem12

Proof of Theorem merlem12
StepHypRef Expression
1 merlem5 1479 . . . 4
2 merlem2 1476 . . . 4
31, 2ax-mp 5 . . 3
4 merlem4 1478 . . 3
53, 4ax-mp 5 . 2
6 merlem11 1485 . 2
75, 6ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4
This theorem is referenced by:  merlem13  1487
This theorem was proved from axioms:  ax-mp 5  ax-meredith 1474
  Copyright terms: Public domain W3C validator