MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  merlem13 Unicode version

Theorem merlem13 1487
Description: Step 35 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
merlem13

Proof of Theorem merlem13
StepHypRef Expression
1 merlem12 1486 . . . . 5
2 merlem12 1486 . . . . . . . 8
3 merlem5 1479 . . . . . . . 8
42, 3ax-mp 5 . . . . . . 7
5 merlem6 1480 . . . . . . 7
64, 5ax-mp 5 . . . . . 6
7 ax-meredith 1474 . . . . . 6
86, 7ax-mp 5 . . . . 5
91, 8ax-mp 5 . . . 4
10 merlem6 1480 . . . 4
119, 10ax-mp 5 . . 3
12 merlem11 1485 . . 3
1311, 12ax-mp 5 . 2
14 ax-meredith 1474 . 2
1513, 14ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4
This theorem is referenced by:  luk-1  1488
This theorem was proved from axioms:  ax-mp 5  ax-meredith 1474
  Copyright terms: Public domain W3C validator