MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  merlem3 Unicode version

Theorem merlem3 1477
Description: Step 7 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
merlem3

Proof of Theorem merlem3
StepHypRef Expression
1 merlem2 1476 . . . 4
2 merlem2 1476 . . . 4
31, 2ax-mp 5 . . 3
4 ax-meredith 1474 . . 3
53, 4ax-mp 5 . 2
6 ax-meredith 1474 . 2
75, 6ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4
This theorem is referenced by:  merlem4  1478  merlem6  1480
This theorem was proved from axioms:  ax-mp 5  ax-meredith 1474
  Copyright terms: Public domain W3C validator