MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  merlem4 Unicode version

Theorem merlem4 1478
Description: Step 8 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
merlem4

Proof of Theorem merlem4
StepHypRef Expression
1 ax-meredith 1474 . 2
2 merlem3 1477 . 2
31, 2ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4
This theorem is referenced by:  merlem5  1479  merlem6  1480  merlem7  1481  merlem12  1486  luk-2  1489
This theorem was proved from axioms:  ax-mp 5  ax-meredith 1474
  Copyright terms: Public domain W3C validator