MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  merlem5 Unicode version

Theorem merlem5 1479
Description: Step 11 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
merlem5

Proof of Theorem merlem5
StepHypRef Expression
1 ax-meredith 1474 . 2
2 ax-meredith 1474 . . 3
3 merlem1 1475 . . . . 5
4 merlem4 1478 . . . . 5
53, 4ax-mp 5 . . . 4
6 ax-meredith 1474 . . . 4
75, 6ax-mp 5 . . 3
82, 7ax-mp 5 . 2
91, 8ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4
This theorem is referenced by:  merlem12  1486  merlem13  1487  luk-2  1489
This theorem was proved from axioms:  ax-mp 5  ax-meredith 1474
  Copyright terms: Public domain W3C validator