MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  merlem7 Unicode version

Theorem merlem7 1481
Description: Between steps 14 and 15 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
merlem7

Proof of Theorem merlem7
StepHypRef Expression
1 merlem4 1478 . 2
2 merlem6 1480 . . . 4
3 ax-meredith 1474 . . . 4
42, 3ax-mp 5 . . 3
5 ax-meredith 1474 . . 3
64, 5ax-mp 5 . 2
71, 6ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4
This theorem is referenced by:  merlem8  1482
This theorem was proved from axioms:  ax-mp 5  ax-meredith 1474
  Copyright terms: Public domain W3C validator