![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mnfaddpnf | Unicode version |
Description: Addition of negative and positive infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
mnfaddpnf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr 11352 | . . 3 | |
2 | pnfxr 11350 | . . 3 | |
3 | xaddval 11451 | . . 3 | |
4 | 1, 2, 3 | mp2an 672 | . 2 |
5 | mnfnepnf 11356 | . . . 4 | |
6 | ifnefalse 3953 | . . . 4 | |
7 | 5, 6 | ax-mp 5 | . . 3 |
8 | eqid 2457 | . . . . 5 | |
9 | 8 | iftruei 3948 | . . . 4 |
10 | eqid 2457 | . . . . 5 | |
11 | 10 | iftruei 3948 | . . . 4 |
12 | 9, 11 | eqtri 2486 | . . 3 |
13 | 7, 12 | eqtri 2486 | . 2 |
14 | 4, 13 | eqtri 2486 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 e. wcel 1818
=/= wne 2652 if cif 3941 (class class class)co 6296
0 cc0 9513 caddc 9516 cpnf 9646 cmnf 9647
cxr 9648
cxad 11345 |
This theorem is referenced by: xnegid 11464 xaddcom 11466 xnegdi 11469 xsubge0 11482 xadddilem 11515 xrsnsgrp 18454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-mulcl 9575 ax-i2m1 9581 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-iota 5556 df-fun 5595 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-pnf 9651 df-mnf 9652 df-xr 9653 df-xadd 11348 |
Copyright terms: Public domain | W3C validator |