![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mo2v | Unicode version |
Description: Alternate definition of "at most one." Unlike mo2 2293, which is slightly more general, it does not depend on ax-11 1842 and ax-13 1999, whence it is preferable within predicate logic. Elsewhere, most theorems depend on these axioms anyway, so this advantage is no longer important. (Contributed by Wolf Lammen, 27-May-2019.) (Proof shortened by Wolf Lammen, 10-Nov-2019.) |
Ref | Expression |
---|---|
mo2v |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mo 2287 | . 2 | |
2 | df-eu 2286 | . . 3 | |
3 | 2 | imbi2i 312 | . 2 |
4 | alnex 1614 | . . . . . . 7 | |
5 | pm2.21 108 | . . . . . . . 8 | |
6 | 5 | alimi 1633 | . . . . . . 7 |
7 | 4, 6 | sylbir 213 | . . . . . 6 |
8 | 7 | eximi 1656 | . . . . 5 |
9 | 8 | 19.23bi 1871 | . . . 4 |
10 | bi1 186 | . . . . . 6 | |
11 | 10 | alimi 1633 | . . . . 5 |
12 | 11 | eximi 1656 | . . . 4 |
13 | 9, 12 | ja 161 | . . 3 |
14 | nfia1 1954 | . . . . . 6 | |
15 | id 22 | . . . . . . . . . 10 | |
16 | ax12v 1855 | . . . . . . . . . . 11 | |
17 | 16 | com12 31 | . . . . . . . . . 10 |
18 | 15, 17 | embantd 54 | . . . . . . . . 9 |
19 | 18 | spsd 1867 | . . . . . . . 8 |
20 | 19 | ancld 553 | . . . . . . 7 |
21 | albiim 1699 | . . . . . . 7 | |
22 | 20, 21 | syl6ibr 227 | . . . . . 6 |
23 | 14, 22 | exlimi 1912 | . . . . 5 |
24 | 23 | eximdv 1710 | . . . 4 |
25 | 24 | com12 31 | . . 3 |
26 | 13, 25 | impbii 188 | . 2 |
27 | 1, 3, 26 | 3bitri 271 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 A. wal 1393
E. wex 1612 E! weu 2282 E* wmo 2283 |
This theorem is referenced by: mo2 2293 eu3v 2312 mo3 2323 mo3OLD 2324 sbmo 2335 moim 2339 mopick 2356 2mo2 2372 mo2icl 3278 moabex 4711 dffun3 5604 dffun6f 5607 grothprim 9233 wl-mo2dnae 30019 wl-mo2t 30020 wl-mo3t 30021 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 df-eu 2286 df-mo 2287 |
Copyright terms: Public domain | W3C validator |