![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mo2vOLDOLD | Unicode version |
Description: Obsolete proof of mo2v 2289 as of 24-Aug-2019. (Contributed by Wolf Lammen, 27-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mo2vOLDOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mo 2287 | . 2 | |
2 | df-eu 2286 | . . 3 | |
3 | 2 | imbi2i 312 | . 2 |
4 | alnex 1614 | . . . . . 6 | |
5 | pm2.21 108 | . . . . . . 7 | |
6 | 5 | alimi 1633 | . . . . . 6 |
7 | 4, 6 | sylbir 213 | . . . . 5 |
8 | 19.8a 1857 | . . . . 5 | |
9 | 7, 8 | syl 16 | . . . 4 |
10 | bi1 186 | . . . . . 6 | |
11 | 10 | alimi 1633 | . . . . 5 |
12 | 11 | eximi 1656 | . . . 4 |
13 | 9, 12 | ja 161 | . . 3 |
14 | nfia1 1954 | . . . . . . . 8 | |
15 | id 22 | . . . . . . . . . 10 | |
16 | ax-5 1704 | . . . . . . . . . . 11 | |
17 | ax-12 1854 | . . . . . . . . . . 11 | |
18 | 16, 17 | syl5com 30 | . . . . . . . . . 10 |
19 | 15, 18 | embantd 54 | . . . . . . . . 9 |
20 | 19 | spsd 1867 | . . . . . . . 8 |
21 | 14, 20 | exlimi 1912 | . . . . . . 7 |
22 | 21 | ancld 553 | . . . . . 6 |
23 | albiim 1699 | . . . . . 6 | |
24 | 22, 23 | syl6ibr 227 | . . . . 5 |
25 | 24 | eximdv 1710 | . . . 4 |
26 | 25 | com12 31 | . . 3 |
27 | 13, 26 | impbii 188 | . 2 |
28 | 1, 3, 27 | 3bitri 271 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 A. wal 1393
E. wex 1612 E! weu 2282 E* wmo 2283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 df-eu 2286 df-mo 2287 |
Copyright terms: Public domain | W3C validator |