Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mo2vOLDOLD Unicode version

Theorem mo2vOLDOLD 2291
 Description: Obsolete proof of mo2v 2289 as of 24-Aug-2019. (Contributed by Wolf Lammen, 27-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
mo2vOLDOLD
Distinct variable groups:   ,   ,

Proof of Theorem mo2vOLDOLD
StepHypRef Expression
1 df-mo 2287 . 2
2 df-eu 2286 . . 3
32imbi2i 312 . 2
4 alnex 1614 . . . . . 6
5 pm2.21 108 . . . . . . 7
65alimi 1633 . . . . . 6
74, 6sylbir 213 . . . . 5
8 19.8a 1857 . . . . 5
97, 8syl 16 . . . 4
10 bi1 186 . . . . . 6
1110alimi 1633 . . . . 5
1211eximi 1656 . . . 4
139, 12ja 161 . . 3
14 nfia1 1954 . . . . . . . 8
15 id 22 . . . . . . . . . 10
16 ax-5 1704 . . . . . . . . . . 11
17 ax-12 1854 . . . . . . . . . . 11
1816, 17syl5com 30 . . . . . . . . . 10
1915, 18embantd 54 . . . . . . . . 9
2019spsd 1867 . . . . . . . 8
2114, 20exlimi 1912 . . . . . . 7
2221ancld 553 . . . . . 6
23 albiim 1699 . . . . . 6
2422, 23syl6ibr 227 . . . . 5
2524eximdv 1710 . . . 4
2625com12 31 . . 3
2713, 26impbii 188 . 2
281, 3, 273bitri 271 1
 Colors of variables: wff setvar class Syntax hints:  -.wn 3  ->wi 4  <->wb 184  /\wa 369  A.wal 1393  E.wex 1612  E!weu 2282  E*wmo 2283 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854 This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617  df-eu 2286  df-mo 2287
 Copyright terms: Public domain W3C validator