Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mo3OLD Unicode version

Theorem mo3OLD 2324
 Description: Obsolete proof of mo3 2323 as of 20-Jul-2019. (Contributed by NM, 8-Mar-1995.) (Revised by Wolf Lammen, 3-Dec-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
mo3.1
Assertion
Ref Expression
mo3OLD
Distinct variable group:   ,

Proof of Theorem mo3OLD
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 mo2v 2289 . . 3
2 mo3.1 . . . . . . . . 9
3 nfv 1707 . . . . . . . . 9
42, 3nfim 1920 . . . . . . . 8
5 nfs1v 2181 . . . . . . . . 9
6 nfv 1707 . . . . . . . . 9
75, 6nfim 1920 . . . . . . . 8
8 sbequ2 1741 . . . . . . . . 9
9 ax-7 1790 . . . . . . . . 9
108, 9imim12d 74 . . . . . . . 8
114, 7, 10cbv3 2015 . . . . . . 7
1211ancli 551 . . . . . 6
134, 7aaan 1975 . . . . . 6
1412, 13sylibr 212 . . . . 5
15 prth 571 . . . . . . 7
16 equtr2 1802 . . . . . . 7
1715, 16syl6 33 . . . . . 6
18172alimi 1634 . . . . 5
1914, 18syl 16 . . . 4
2019exlimiv 1722 . . 3
211, 20sylbi 195 . 2
22 nfa1 1897 . . . . . 6
23 pm3.3 444 . . . . . . . . . 10
2423com3r 79 . . . . . . . . 9
255, 24alimd 1876 . . . . . . . 8
2625com12 31 . . . . . . 7
2726sps 1865 . . . . . 6
2822, 27eximd 1882 . . . . 5
292sb8e 2168 . . . . 5
302mo2 2293 . . . . 5
3128, 29, 303imtr4g 270 . . . 4
32 moabs 2315 . . . 4
3331, 32sylibr 212 . . 3
3433alcoms 1843 . 2
3521, 34impbii 188 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  /\wa 369  A.wal 1393  E.wex 1612  F/wnf 1616  [wsb 1739  E*wmo 2283 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999 This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287
 Copyright terms: Public domain W3C validator