![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mo3OLD | Unicode version |
Description: Obsolete proof of mo3 2323 as of 20-Jul-2019. (Contributed by NM, 8-Mar-1995.) (Revised by Wolf Lammen, 3-Dec-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mo3.1 |
Ref | Expression |
---|---|
mo3OLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mo2v 2289 | . . 3 | |
2 | mo3.1 | . . . . . . . . 9 | |
3 | nfv 1707 | . . . . . . . . 9 | |
4 | 2, 3 | nfim 1920 | . . . . . . . 8 |
5 | nfs1v 2181 | . . . . . . . . 9 | |
6 | nfv 1707 | . . . . . . . . 9 | |
7 | 5, 6 | nfim 1920 | . . . . . . . 8 |
8 | sbequ2 1741 | . . . . . . . . 9 | |
9 | ax-7 1790 | . . . . . . . . 9 | |
10 | 8, 9 | imim12d 74 | . . . . . . . 8 |
11 | 4, 7, 10 | cbv3 2015 | . . . . . . 7 |
12 | 11 | ancli 551 | . . . . . 6 |
13 | 4, 7 | aaan 1975 | . . . . . 6 |
14 | 12, 13 | sylibr 212 | . . . . 5 |
15 | prth 571 | . . . . . . 7 | |
16 | equtr2 1802 | . . . . . . 7 | |
17 | 15, 16 | syl6 33 | . . . . . 6 |
18 | 17 | 2alimi 1634 | . . . . 5 |
19 | 14, 18 | syl 16 | . . . 4 |
20 | 19 | exlimiv 1722 | . . 3 |
21 | 1, 20 | sylbi 195 | . 2 |
22 | nfa1 1897 | . . . . . 6 | |
23 | pm3.3 444 | . . . . . . . . . 10 | |
24 | 23 | com3r 79 | . . . . . . . . 9 |
25 | 5, 24 | alimd 1876 | . . . . . . . 8 |
26 | 25 | com12 31 | . . . . . . 7 |
27 | 26 | sps 1865 | . . . . . 6 |
28 | 22, 27 | eximd 1882 | . . . . 5 |
29 | 2 | sb8e 2168 | . . . . 5 |
30 | 2 | mo2 2293 | . . . . 5 |
31 | 28, 29, 30 | 3imtr4g 270 | . . . 4 |
32 | moabs 2315 | . . . 4 | |
33 | 31, 32 | sylibr 212 | . . 3 |
34 | 33 | alcoms 1843 | . 2 |
35 | 21, 34 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 E. wex 1612
F/ wnf 1616 [ wsb 1739 E* wmo 2283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 |
Copyright terms: Public domain | W3C validator |